This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Obsolete version of fnsnb as of 21-Oct-2025. A function whose domain is a singleton can be represented as a singleton of an ordered pair. (Contributed by Jonathan Ben-Naim, 3-Jun-2011) Revised to add reverse implication. (Revised by NM, 29-Dec-2018) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | fnsnb.1 | |- A e. _V |
|
| Assertion | fnsnbOLD | |- ( F Fn { A } <-> F = { <. A , ( F ` A ) >. } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fnsnb.1 | |- A e. _V |
|
| 2 | fnsnr | |- ( F Fn { A } -> ( x e. F -> x = <. A , ( F ` A ) >. ) ) |
|
| 3 | df-fn | |- ( F Fn { A } <-> ( Fun F /\ dom F = { A } ) ) |
|
| 4 | 1 | snid | |- A e. { A } |
| 5 | eleq2 | |- ( dom F = { A } -> ( A e. dom F <-> A e. { A } ) ) |
|
| 6 | 4 5 | mpbiri | |- ( dom F = { A } -> A e. dom F ) |
| 7 | 6 | anim2i | |- ( ( Fun F /\ dom F = { A } ) -> ( Fun F /\ A e. dom F ) ) |
| 8 | 3 7 | sylbi | |- ( F Fn { A } -> ( Fun F /\ A e. dom F ) ) |
| 9 | funfvop | |- ( ( Fun F /\ A e. dom F ) -> <. A , ( F ` A ) >. e. F ) |
|
| 10 | 8 9 | syl | |- ( F Fn { A } -> <. A , ( F ` A ) >. e. F ) |
| 11 | eleq1 | |- ( x = <. A , ( F ` A ) >. -> ( x e. F <-> <. A , ( F ` A ) >. e. F ) ) |
|
| 12 | 10 11 | syl5ibrcom | |- ( F Fn { A } -> ( x = <. A , ( F ` A ) >. -> x e. F ) ) |
| 13 | 2 12 | impbid | |- ( F Fn { A } -> ( x e. F <-> x = <. A , ( F ` A ) >. ) ) |
| 14 | velsn | |- ( x e. { <. A , ( F ` A ) >. } <-> x = <. A , ( F ` A ) >. ) |
|
| 15 | 13 14 | bitr4di | |- ( F Fn { A } -> ( x e. F <-> x e. { <. A , ( F ` A ) >. } ) ) |
| 16 | 15 | eqrdv | |- ( F Fn { A } -> F = { <. A , ( F ` A ) >. } ) |
| 17 | fvex | |- ( F ` A ) e. _V |
|
| 18 | 1 17 | fnsn | |- { <. A , ( F ` A ) >. } Fn { A } |
| 19 | fneq1 | |- ( F = { <. A , ( F ` A ) >. } -> ( F Fn { A } <-> { <. A , ( F ` A ) >. } Fn { A } ) ) |
|
| 20 | 18 19 | mpbiri | |- ( F = { <. A , ( F ` A ) >. } -> F Fn { A } ) |
| 21 | 16 20 | impbii | |- ( F Fn { A } <-> F = { <. A , ( F ` A ) >. } ) |