This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A cover is finer than its subcovers. (Contributed by Jeff Hankins, 11-Oct-2009)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fness.1 | ⊢ 𝑋 = ∪ 𝐴 | |
| fness.2 | ⊢ 𝑌 = ∪ 𝐵 | ||
| Assertion | fness | ⊢ ( ( 𝐵 ∈ 𝐶 ∧ 𝐴 ⊆ 𝐵 ∧ 𝑋 = 𝑌 ) → 𝐴 Fne 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fness.1 | ⊢ 𝑋 = ∪ 𝐴 | |
| 2 | fness.2 | ⊢ 𝑌 = ∪ 𝐵 | |
| 3 | simp3 | ⊢ ( ( 𝐵 ∈ 𝐶 ∧ 𝐴 ⊆ 𝐵 ∧ 𝑋 = 𝑌 ) → 𝑋 = 𝑌 ) | |
| 4 | ssel2 | ⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ 𝐵 ) | |
| 5 | 4 | 3adant3 | ⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝑥 ) → 𝑥 ∈ 𝐵 ) |
| 6 | simp3 | ⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝑥 ) → 𝑦 ∈ 𝑥 ) | |
| 7 | ssid | ⊢ 𝑥 ⊆ 𝑥 | |
| 8 | 6 7 | jctir | ⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝑥 ) → ( 𝑦 ∈ 𝑥 ∧ 𝑥 ⊆ 𝑥 ) ) |
| 9 | elequ2 | ⊢ ( 𝑧 = 𝑥 → ( 𝑦 ∈ 𝑧 ↔ 𝑦 ∈ 𝑥 ) ) | |
| 10 | sseq1 | ⊢ ( 𝑧 = 𝑥 → ( 𝑧 ⊆ 𝑥 ↔ 𝑥 ⊆ 𝑥 ) ) | |
| 11 | 9 10 | anbi12d | ⊢ ( 𝑧 = 𝑥 → ( ( 𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑥 ) ↔ ( 𝑦 ∈ 𝑥 ∧ 𝑥 ⊆ 𝑥 ) ) ) |
| 12 | 11 | rspcev | ⊢ ( ( 𝑥 ∈ 𝐵 ∧ ( 𝑦 ∈ 𝑥 ∧ 𝑥 ⊆ 𝑥 ) ) → ∃ 𝑧 ∈ 𝐵 ( 𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑥 ) ) |
| 13 | 5 8 12 | syl2anc | ⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝑥 ) → ∃ 𝑧 ∈ 𝐵 ( 𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑥 ) ) |
| 14 | 13 | 3expib | ⊢ ( 𝐴 ⊆ 𝐵 → ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝑥 ) → ∃ 𝑧 ∈ 𝐵 ( 𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑥 ) ) ) |
| 15 | 14 | ralrimivv | ⊢ ( 𝐴 ⊆ 𝐵 → ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝑥 ∃ 𝑧 ∈ 𝐵 ( 𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑥 ) ) |
| 16 | 15 | 3ad2ant2 | ⊢ ( ( 𝐵 ∈ 𝐶 ∧ 𝐴 ⊆ 𝐵 ∧ 𝑋 = 𝑌 ) → ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝑥 ∃ 𝑧 ∈ 𝐵 ( 𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑥 ) ) |
| 17 | 1 2 | isfne2 | ⊢ ( 𝐵 ∈ 𝐶 → ( 𝐴 Fne 𝐵 ↔ ( 𝑋 = 𝑌 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝑥 ∃ 𝑧 ∈ 𝐵 ( 𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑥 ) ) ) ) |
| 18 | 17 | 3ad2ant1 | ⊢ ( ( 𝐵 ∈ 𝐶 ∧ 𝐴 ⊆ 𝐵 ∧ 𝑋 = 𝑌 ) → ( 𝐴 Fne 𝐵 ↔ ( 𝑋 = 𝑌 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝑥 ∃ 𝑧 ∈ 𝐵 ( 𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑥 ) ) ) ) |
| 19 | 3 16 18 | mpbir2and | ⊢ ( ( 𝐵 ∈ 𝐶 ∧ 𝐴 ⊆ 𝐵 ∧ 𝑋 = 𝑌 ) → 𝐴 Fne 𝐵 ) |