This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Reflexivity of the fineness relation. (Contributed by Jeff Hankins, 12-Oct-2009)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fneref | ⊢ ( 𝐴 ∈ 𝑉 → 𝐴 Fne 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | ⊢ ∪ 𝐴 = ∪ 𝐴 | |
| 2 | ssid | ⊢ 𝑥 ⊆ 𝑥 | |
| 3 | elequ2 | ⊢ ( 𝑧 = 𝑥 → ( 𝑦 ∈ 𝑧 ↔ 𝑦 ∈ 𝑥 ) ) | |
| 4 | sseq1 | ⊢ ( 𝑧 = 𝑥 → ( 𝑧 ⊆ 𝑥 ↔ 𝑥 ⊆ 𝑥 ) ) | |
| 5 | 3 4 | anbi12d | ⊢ ( 𝑧 = 𝑥 → ( ( 𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑥 ) ↔ ( 𝑦 ∈ 𝑥 ∧ 𝑥 ⊆ 𝑥 ) ) ) |
| 6 | 5 | rspcev | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ ( 𝑦 ∈ 𝑥 ∧ 𝑥 ⊆ 𝑥 ) ) → ∃ 𝑧 ∈ 𝐴 ( 𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑥 ) ) |
| 7 | 2 6 | mpanr2 | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝑥 ) → ∃ 𝑧 ∈ 𝐴 ( 𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑥 ) ) |
| 8 | 7 | rgen2 | ⊢ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝑥 ∃ 𝑧 ∈ 𝐴 ( 𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑥 ) |
| 9 | 1 8 | pm3.2i | ⊢ ( ∪ 𝐴 = ∪ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝑥 ∃ 𝑧 ∈ 𝐴 ( 𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑥 ) ) |
| 10 | 1 1 | isfne2 | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝐴 Fne 𝐴 ↔ ( ∪ 𝐴 = ∪ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝑥 ∃ 𝑧 ∈ 𝐴 ( 𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑥 ) ) ) ) |
| 11 | 9 10 | mpbiri | ⊢ ( 𝐴 ∈ 𝑉 → 𝐴 Fne 𝐴 ) |