This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A cover is finer than its subcovers. (Contributed by Jeff Hankins, 11-Oct-2009)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fness.1 | |- X = U. A |
|
| fness.2 | |- Y = U. B |
||
| Assertion | fness | |- ( ( B e. C /\ A C_ B /\ X = Y ) -> A Fne B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fness.1 | |- X = U. A |
|
| 2 | fness.2 | |- Y = U. B |
|
| 3 | simp3 | |- ( ( B e. C /\ A C_ B /\ X = Y ) -> X = Y ) |
|
| 4 | ssel2 | |- ( ( A C_ B /\ x e. A ) -> x e. B ) |
|
| 5 | 4 | 3adant3 | |- ( ( A C_ B /\ x e. A /\ y e. x ) -> x e. B ) |
| 6 | simp3 | |- ( ( A C_ B /\ x e. A /\ y e. x ) -> y e. x ) |
|
| 7 | ssid | |- x C_ x |
|
| 8 | 6 7 | jctir | |- ( ( A C_ B /\ x e. A /\ y e. x ) -> ( y e. x /\ x C_ x ) ) |
| 9 | elequ2 | |- ( z = x -> ( y e. z <-> y e. x ) ) |
|
| 10 | sseq1 | |- ( z = x -> ( z C_ x <-> x C_ x ) ) |
|
| 11 | 9 10 | anbi12d | |- ( z = x -> ( ( y e. z /\ z C_ x ) <-> ( y e. x /\ x C_ x ) ) ) |
| 12 | 11 | rspcev | |- ( ( x e. B /\ ( y e. x /\ x C_ x ) ) -> E. z e. B ( y e. z /\ z C_ x ) ) |
| 13 | 5 8 12 | syl2anc | |- ( ( A C_ B /\ x e. A /\ y e. x ) -> E. z e. B ( y e. z /\ z C_ x ) ) |
| 14 | 13 | 3expib | |- ( A C_ B -> ( ( x e. A /\ y e. x ) -> E. z e. B ( y e. z /\ z C_ x ) ) ) |
| 15 | 14 | ralrimivv | |- ( A C_ B -> A. x e. A A. y e. x E. z e. B ( y e. z /\ z C_ x ) ) |
| 16 | 15 | 3ad2ant2 | |- ( ( B e. C /\ A C_ B /\ X = Y ) -> A. x e. A A. y e. x E. z e. B ( y e. z /\ z C_ x ) ) |
| 17 | 1 2 | isfne2 | |- ( B e. C -> ( A Fne B <-> ( X = Y /\ A. x e. A A. y e. x E. z e. B ( y e. z /\ z C_ x ) ) ) ) |
| 18 | 17 | 3ad2ant1 | |- ( ( B e. C /\ A C_ B /\ X = Y ) -> ( A Fne B <-> ( X = Y /\ A. x e. A A. y e. x E. z e. B ( y e. z /\ z C_ x ) ) ) ) |
| 19 | 3 16 18 | mpbir2and | |- ( ( B e. C /\ A C_ B /\ X = Y ) -> A Fne B ) |