This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A finer filter produces a finer image filter. (Contributed by Jeff Hankins, 16-Nov-2009) (Revised by Stefan O'Rear, 6-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fmss | ⊢ ( ( ( 𝑋 ∈ 𝐴 ∧ 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐶 ∈ ( fBas ‘ 𝑌 ) ) ∧ ( 𝐹 : 𝑌 ⟶ 𝑋 ∧ 𝐵 ⊆ 𝐶 ) ) → ( ( 𝑋 FilMap 𝐹 ) ‘ 𝐵 ) ⊆ ( ( 𝑋 FilMap 𝐹 ) ‘ 𝐶 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl2 | ⊢ ( ( ( 𝑋 ∈ 𝐴 ∧ 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐶 ∈ ( fBas ‘ 𝑌 ) ) ∧ ( 𝐹 : 𝑌 ⟶ 𝑋 ∧ 𝐵 ⊆ 𝐶 ) ) → 𝐵 ∈ ( fBas ‘ 𝑌 ) ) | |
| 2 | simprl | ⊢ ( ( ( 𝑋 ∈ 𝐴 ∧ 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐶 ∈ ( fBas ‘ 𝑌 ) ) ∧ ( 𝐹 : 𝑌 ⟶ 𝑋 ∧ 𝐵 ⊆ 𝐶 ) ) → 𝐹 : 𝑌 ⟶ 𝑋 ) | |
| 3 | simpl1 | ⊢ ( ( ( 𝑋 ∈ 𝐴 ∧ 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐶 ∈ ( fBas ‘ 𝑌 ) ) ∧ ( 𝐹 : 𝑌 ⟶ 𝑋 ∧ 𝐵 ⊆ 𝐶 ) ) → 𝑋 ∈ 𝐴 ) | |
| 4 | eqid | ⊢ ran ( 𝑦 ∈ 𝐵 ↦ ( 𝐹 “ 𝑦 ) ) = ran ( 𝑦 ∈ 𝐵 ↦ ( 𝐹 “ 𝑦 ) ) | |
| 5 | 4 | fbasrn | ⊢ ( ( 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ∧ 𝑋 ∈ 𝐴 ) → ran ( 𝑦 ∈ 𝐵 ↦ ( 𝐹 “ 𝑦 ) ) ∈ ( fBas ‘ 𝑋 ) ) |
| 6 | 1 2 3 5 | syl3anc | ⊢ ( ( ( 𝑋 ∈ 𝐴 ∧ 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐶 ∈ ( fBas ‘ 𝑌 ) ) ∧ ( 𝐹 : 𝑌 ⟶ 𝑋 ∧ 𝐵 ⊆ 𝐶 ) ) → ran ( 𝑦 ∈ 𝐵 ↦ ( 𝐹 “ 𝑦 ) ) ∈ ( fBas ‘ 𝑋 ) ) |
| 7 | simpl3 | ⊢ ( ( ( 𝑋 ∈ 𝐴 ∧ 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐶 ∈ ( fBas ‘ 𝑌 ) ) ∧ ( 𝐹 : 𝑌 ⟶ 𝑋 ∧ 𝐵 ⊆ 𝐶 ) ) → 𝐶 ∈ ( fBas ‘ 𝑌 ) ) | |
| 8 | eqid | ⊢ ran ( 𝑦 ∈ 𝐶 ↦ ( 𝐹 “ 𝑦 ) ) = ran ( 𝑦 ∈ 𝐶 ↦ ( 𝐹 “ 𝑦 ) ) | |
| 9 | 8 | fbasrn | ⊢ ( ( 𝐶 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ∧ 𝑋 ∈ 𝐴 ) → ran ( 𝑦 ∈ 𝐶 ↦ ( 𝐹 “ 𝑦 ) ) ∈ ( fBas ‘ 𝑋 ) ) |
| 10 | 7 2 3 9 | syl3anc | ⊢ ( ( ( 𝑋 ∈ 𝐴 ∧ 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐶 ∈ ( fBas ‘ 𝑌 ) ) ∧ ( 𝐹 : 𝑌 ⟶ 𝑋 ∧ 𝐵 ⊆ 𝐶 ) ) → ran ( 𝑦 ∈ 𝐶 ↦ ( 𝐹 “ 𝑦 ) ) ∈ ( fBas ‘ 𝑋 ) ) |
| 11 | resmpt | ⊢ ( 𝐵 ⊆ 𝐶 → ( ( 𝑦 ∈ 𝐶 ↦ ( 𝐹 “ 𝑦 ) ) ↾ 𝐵 ) = ( 𝑦 ∈ 𝐵 ↦ ( 𝐹 “ 𝑦 ) ) ) | |
| 12 | 11 | ad2antll | ⊢ ( ( ( 𝑋 ∈ 𝐴 ∧ 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐶 ∈ ( fBas ‘ 𝑌 ) ) ∧ ( 𝐹 : 𝑌 ⟶ 𝑋 ∧ 𝐵 ⊆ 𝐶 ) ) → ( ( 𝑦 ∈ 𝐶 ↦ ( 𝐹 “ 𝑦 ) ) ↾ 𝐵 ) = ( 𝑦 ∈ 𝐵 ↦ ( 𝐹 “ 𝑦 ) ) ) |
| 13 | resss | ⊢ ( ( 𝑦 ∈ 𝐶 ↦ ( 𝐹 “ 𝑦 ) ) ↾ 𝐵 ) ⊆ ( 𝑦 ∈ 𝐶 ↦ ( 𝐹 “ 𝑦 ) ) | |
| 14 | 12 13 | eqsstrrdi | ⊢ ( ( ( 𝑋 ∈ 𝐴 ∧ 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐶 ∈ ( fBas ‘ 𝑌 ) ) ∧ ( 𝐹 : 𝑌 ⟶ 𝑋 ∧ 𝐵 ⊆ 𝐶 ) ) → ( 𝑦 ∈ 𝐵 ↦ ( 𝐹 “ 𝑦 ) ) ⊆ ( 𝑦 ∈ 𝐶 ↦ ( 𝐹 “ 𝑦 ) ) ) |
| 15 | rnss | ⊢ ( ( 𝑦 ∈ 𝐵 ↦ ( 𝐹 “ 𝑦 ) ) ⊆ ( 𝑦 ∈ 𝐶 ↦ ( 𝐹 “ 𝑦 ) ) → ran ( 𝑦 ∈ 𝐵 ↦ ( 𝐹 “ 𝑦 ) ) ⊆ ran ( 𝑦 ∈ 𝐶 ↦ ( 𝐹 “ 𝑦 ) ) ) | |
| 16 | 14 15 | syl | ⊢ ( ( ( 𝑋 ∈ 𝐴 ∧ 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐶 ∈ ( fBas ‘ 𝑌 ) ) ∧ ( 𝐹 : 𝑌 ⟶ 𝑋 ∧ 𝐵 ⊆ 𝐶 ) ) → ran ( 𝑦 ∈ 𝐵 ↦ ( 𝐹 “ 𝑦 ) ) ⊆ ran ( 𝑦 ∈ 𝐶 ↦ ( 𝐹 “ 𝑦 ) ) ) |
| 17 | fgss | ⊢ ( ( ran ( 𝑦 ∈ 𝐵 ↦ ( 𝐹 “ 𝑦 ) ) ∈ ( fBas ‘ 𝑋 ) ∧ ran ( 𝑦 ∈ 𝐶 ↦ ( 𝐹 “ 𝑦 ) ) ∈ ( fBas ‘ 𝑋 ) ∧ ran ( 𝑦 ∈ 𝐵 ↦ ( 𝐹 “ 𝑦 ) ) ⊆ ran ( 𝑦 ∈ 𝐶 ↦ ( 𝐹 “ 𝑦 ) ) ) → ( 𝑋 filGen ran ( 𝑦 ∈ 𝐵 ↦ ( 𝐹 “ 𝑦 ) ) ) ⊆ ( 𝑋 filGen ran ( 𝑦 ∈ 𝐶 ↦ ( 𝐹 “ 𝑦 ) ) ) ) | |
| 18 | 6 10 16 17 | syl3anc | ⊢ ( ( ( 𝑋 ∈ 𝐴 ∧ 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐶 ∈ ( fBas ‘ 𝑌 ) ) ∧ ( 𝐹 : 𝑌 ⟶ 𝑋 ∧ 𝐵 ⊆ 𝐶 ) ) → ( 𝑋 filGen ran ( 𝑦 ∈ 𝐵 ↦ ( 𝐹 “ 𝑦 ) ) ) ⊆ ( 𝑋 filGen ran ( 𝑦 ∈ 𝐶 ↦ ( 𝐹 “ 𝑦 ) ) ) ) |
| 19 | fmval | ⊢ ( ( 𝑋 ∈ 𝐴 ∧ 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) → ( ( 𝑋 FilMap 𝐹 ) ‘ 𝐵 ) = ( 𝑋 filGen ran ( 𝑦 ∈ 𝐵 ↦ ( 𝐹 “ 𝑦 ) ) ) ) | |
| 20 | 3 1 2 19 | syl3anc | ⊢ ( ( ( 𝑋 ∈ 𝐴 ∧ 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐶 ∈ ( fBas ‘ 𝑌 ) ) ∧ ( 𝐹 : 𝑌 ⟶ 𝑋 ∧ 𝐵 ⊆ 𝐶 ) ) → ( ( 𝑋 FilMap 𝐹 ) ‘ 𝐵 ) = ( 𝑋 filGen ran ( 𝑦 ∈ 𝐵 ↦ ( 𝐹 “ 𝑦 ) ) ) ) |
| 21 | fmval | ⊢ ( ( 𝑋 ∈ 𝐴 ∧ 𝐶 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) → ( ( 𝑋 FilMap 𝐹 ) ‘ 𝐶 ) = ( 𝑋 filGen ran ( 𝑦 ∈ 𝐶 ↦ ( 𝐹 “ 𝑦 ) ) ) ) | |
| 22 | 3 7 2 21 | syl3anc | ⊢ ( ( ( 𝑋 ∈ 𝐴 ∧ 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐶 ∈ ( fBas ‘ 𝑌 ) ) ∧ ( 𝐹 : 𝑌 ⟶ 𝑋 ∧ 𝐵 ⊆ 𝐶 ) ) → ( ( 𝑋 FilMap 𝐹 ) ‘ 𝐶 ) = ( 𝑋 filGen ran ( 𝑦 ∈ 𝐶 ↦ ( 𝐹 “ 𝑦 ) ) ) ) |
| 23 | 18 20 22 | 3sstr4d | ⊢ ( ( ( 𝑋 ∈ 𝐴 ∧ 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐶 ∈ ( fBas ‘ 𝑌 ) ) ∧ ( 𝐹 : 𝑌 ⟶ 𝑋 ∧ 𝐵 ⊆ 𝐶 ) ) → ( ( 𝑋 FilMap 𝐹 ) ‘ 𝐵 ) ⊆ ( ( 𝑋 FilMap 𝐹 ) ‘ 𝐶 ) ) |