This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If A and B are both limits of the same filter, then all neighborhoods of A and B intersect. (Contributed by Mario Carneiro, 21-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hausflimlem | ⊢ ( ( ( 𝐴 ∈ ( 𝐽 fLim 𝐹 ) ∧ 𝐵 ∈ ( 𝐽 fLim 𝐹 ) ) ∧ ( 𝑈 ∈ 𝐽 ∧ 𝑉 ∈ 𝐽 ) ∧ ( 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ) ) → ( 𝑈 ∩ 𝑉 ) ≠ ∅ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1l | ⊢ ( ( ( 𝐴 ∈ ( 𝐽 fLim 𝐹 ) ∧ 𝐵 ∈ ( 𝐽 fLim 𝐹 ) ) ∧ ( 𝑈 ∈ 𝐽 ∧ 𝑉 ∈ 𝐽 ) ∧ ( 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ) ) → 𝐴 ∈ ( 𝐽 fLim 𝐹 ) ) | |
| 2 | eqid | ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 3 | 2 | flimfil | ⊢ ( 𝐴 ∈ ( 𝐽 fLim 𝐹 ) → 𝐹 ∈ ( Fil ‘ ∪ 𝐽 ) ) |
| 4 | 1 3 | syl | ⊢ ( ( ( 𝐴 ∈ ( 𝐽 fLim 𝐹 ) ∧ 𝐵 ∈ ( 𝐽 fLim 𝐹 ) ) ∧ ( 𝑈 ∈ 𝐽 ∧ 𝑉 ∈ 𝐽 ) ∧ ( 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ) ) → 𝐹 ∈ ( Fil ‘ ∪ 𝐽 ) ) |
| 5 | flimtop | ⊢ ( 𝐴 ∈ ( 𝐽 fLim 𝐹 ) → 𝐽 ∈ Top ) | |
| 6 | 1 5 | syl | ⊢ ( ( ( 𝐴 ∈ ( 𝐽 fLim 𝐹 ) ∧ 𝐵 ∈ ( 𝐽 fLim 𝐹 ) ) ∧ ( 𝑈 ∈ 𝐽 ∧ 𝑉 ∈ 𝐽 ) ∧ ( 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ) ) → 𝐽 ∈ Top ) |
| 7 | simp2l | ⊢ ( ( ( 𝐴 ∈ ( 𝐽 fLim 𝐹 ) ∧ 𝐵 ∈ ( 𝐽 fLim 𝐹 ) ) ∧ ( 𝑈 ∈ 𝐽 ∧ 𝑉 ∈ 𝐽 ) ∧ ( 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ) ) → 𝑈 ∈ 𝐽 ) | |
| 8 | simp3l | ⊢ ( ( ( 𝐴 ∈ ( 𝐽 fLim 𝐹 ) ∧ 𝐵 ∈ ( 𝐽 fLim 𝐹 ) ) ∧ ( 𝑈 ∈ 𝐽 ∧ 𝑉 ∈ 𝐽 ) ∧ ( 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ) ) → 𝐴 ∈ 𝑈 ) | |
| 9 | opnneip | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑈 ∈ 𝐽 ∧ 𝐴 ∈ 𝑈 ) → 𝑈 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) | |
| 10 | 6 7 8 9 | syl3anc | ⊢ ( ( ( 𝐴 ∈ ( 𝐽 fLim 𝐹 ) ∧ 𝐵 ∈ ( 𝐽 fLim 𝐹 ) ) ∧ ( 𝑈 ∈ 𝐽 ∧ 𝑉 ∈ 𝐽 ) ∧ ( 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ) ) → 𝑈 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) |
| 11 | flimnei | ⊢ ( ( 𝐴 ∈ ( 𝐽 fLim 𝐹 ) ∧ 𝑈 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) → 𝑈 ∈ 𝐹 ) | |
| 12 | 1 10 11 | syl2anc | ⊢ ( ( ( 𝐴 ∈ ( 𝐽 fLim 𝐹 ) ∧ 𝐵 ∈ ( 𝐽 fLim 𝐹 ) ) ∧ ( 𝑈 ∈ 𝐽 ∧ 𝑉 ∈ 𝐽 ) ∧ ( 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ) ) → 𝑈 ∈ 𝐹 ) |
| 13 | simp1r | ⊢ ( ( ( 𝐴 ∈ ( 𝐽 fLim 𝐹 ) ∧ 𝐵 ∈ ( 𝐽 fLim 𝐹 ) ) ∧ ( 𝑈 ∈ 𝐽 ∧ 𝑉 ∈ 𝐽 ) ∧ ( 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ) ) → 𝐵 ∈ ( 𝐽 fLim 𝐹 ) ) | |
| 14 | simp2r | ⊢ ( ( ( 𝐴 ∈ ( 𝐽 fLim 𝐹 ) ∧ 𝐵 ∈ ( 𝐽 fLim 𝐹 ) ) ∧ ( 𝑈 ∈ 𝐽 ∧ 𝑉 ∈ 𝐽 ) ∧ ( 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ) ) → 𝑉 ∈ 𝐽 ) | |
| 15 | simp3r | ⊢ ( ( ( 𝐴 ∈ ( 𝐽 fLim 𝐹 ) ∧ 𝐵 ∈ ( 𝐽 fLim 𝐹 ) ) ∧ ( 𝑈 ∈ 𝐽 ∧ 𝑉 ∈ 𝐽 ) ∧ ( 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ) ) → 𝐵 ∈ 𝑉 ) | |
| 16 | opnneip | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑉 ∈ 𝐽 ∧ 𝐵 ∈ 𝑉 ) → 𝑉 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐵 } ) ) | |
| 17 | 6 14 15 16 | syl3anc | ⊢ ( ( ( 𝐴 ∈ ( 𝐽 fLim 𝐹 ) ∧ 𝐵 ∈ ( 𝐽 fLim 𝐹 ) ) ∧ ( 𝑈 ∈ 𝐽 ∧ 𝑉 ∈ 𝐽 ) ∧ ( 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ) ) → 𝑉 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐵 } ) ) |
| 18 | flimnei | ⊢ ( ( 𝐵 ∈ ( 𝐽 fLim 𝐹 ) ∧ 𝑉 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐵 } ) ) → 𝑉 ∈ 𝐹 ) | |
| 19 | 13 17 18 | syl2anc | ⊢ ( ( ( 𝐴 ∈ ( 𝐽 fLim 𝐹 ) ∧ 𝐵 ∈ ( 𝐽 fLim 𝐹 ) ) ∧ ( 𝑈 ∈ 𝐽 ∧ 𝑉 ∈ 𝐽 ) ∧ ( 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ) ) → 𝑉 ∈ 𝐹 ) |
| 20 | filinn0 | ⊢ ( ( 𝐹 ∈ ( Fil ‘ ∪ 𝐽 ) ∧ 𝑈 ∈ 𝐹 ∧ 𝑉 ∈ 𝐹 ) → ( 𝑈 ∩ 𝑉 ) ≠ ∅ ) | |
| 21 | 4 12 19 20 | syl3anc | ⊢ ( ( ( 𝐴 ∈ ( 𝐽 fLim 𝐹 ) ∧ 𝐵 ∈ ( 𝐽 fLim 𝐹 ) ) ∧ ( 𝑈 ∈ 𝐽 ∧ 𝑉 ∈ 𝐽 ) ∧ ( 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ) ) → ( 𝑈 ∩ 𝑉 ) ≠ ∅ ) |