This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Converse of the relation F . (Contributed by Mario Carneiro, 23-Dec-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | flift.1 | ⊢ 𝐹 = ran ( 𝑥 ∈ 𝑋 ↦ 〈 𝐴 , 𝐵 〉 ) | |
| flift.2 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐴 ∈ 𝑅 ) | ||
| flift.3 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐵 ∈ 𝑆 ) | ||
| Assertion | fliftcnv | ⊢ ( 𝜑 → ◡ 𝐹 = ran ( 𝑥 ∈ 𝑋 ↦ 〈 𝐵 , 𝐴 〉 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | flift.1 | ⊢ 𝐹 = ran ( 𝑥 ∈ 𝑋 ↦ 〈 𝐴 , 𝐵 〉 ) | |
| 2 | flift.2 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐴 ∈ 𝑅 ) | |
| 3 | flift.3 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐵 ∈ 𝑆 ) | |
| 4 | eqid | ⊢ ran ( 𝑥 ∈ 𝑋 ↦ 〈 𝐵 , 𝐴 〉 ) = ran ( 𝑥 ∈ 𝑋 ↦ 〈 𝐵 , 𝐴 〉 ) | |
| 5 | 4 3 2 | fliftrel | ⊢ ( 𝜑 → ran ( 𝑥 ∈ 𝑋 ↦ 〈 𝐵 , 𝐴 〉 ) ⊆ ( 𝑆 × 𝑅 ) ) |
| 6 | relxp | ⊢ Rel ( 𝑆 × 𝑅 ) | |
| 7 | relss | ⊢ ( ran ( 𝑥 ∈ 𝑋 ↦ 〈 𝐵 , 𝐴 〉 ) ⊆ ( 𝑆 × 𝑅 ) → ( Rel ( 𝑆 × 𝑅 ) → Rel ran ( 𝑥 ∈ 𝑋 ↦ 〈 𝐵 , 𝐴 〉 ) ) ) | |
| 8 | 5 6 7 | mpisyl | ⊢ ( 𝜑 → Rel ran ( 𝑥 ∈ 𝑋 ↦ 〈 𝐵 , 𝐴 〉 ) ) |
| 9 | relcnv | ⊢ Rel ◡ 𝐹 | |
| 10 | 8 9 | jctil | ⊢ ( 𝜑 → ( Rel ◡ 𝐹 ∧ Rel ran ( 𝑥 ∈ 𝑋 ↦ 〈 𝐵 , 𝐴 〉 ) ) ) |
| 11 | 1 2 3 | fliftel | ⊢ ( 𝜑 → ( 𝑧 𝐹 𝑦 ↔ ∃ 𝑥 ∈ 𝑋 ( 𝑧 = 𝐴 ∧ 𝑦 = 𝐵 ) ) ) |
| 12 | vex | ⊢ 𝑦 ∈ V | |
| 13 | vex | ⊢ 𝑧 ∈ V | |
| 14 | 12 13 | brcnv | ⊢ ( 𝑦 ◡ 𝐹 𝑧 ↔ 𝑧 𝐹 𝑦 ) |
| 15 | ancom | ⊢ ( ( 𝑦 = 𝐵 ∧ 𝑧 = 𝐴 ) ↔ ( 𝑧 = 𝐴 ∧ 𝑦 = 𝐵 ) ) | |
| 16 | 15 | rexbii | ⊢ ( ∃ 𝑥 ∈ 𝑋 ( 𝑦 = 𝐵 ∧ 𝑧 = 𝐴 ) ↔ ∃ 𝑥 ∈ 𝑋 ( 𝑧 = 𝐴 ∧ 𝑦 = 𝐵 ) ) |
| 17 | 11 14 16 | 3bitr4g | ⊢ ( 𝜑 → ( 𝑦 ◡ 𝐹 𝑧 ↔ ∃ 𝑥 ∈ 𝑋 ( 𝑦 = 𝐵 ∧ 𝑧 = 𝐴 ) ) ) |
| 18 | 4 3 2 | fliftel | ⊢ ( 𝜑 → ( 𝑦 ran ( 𝑥 ∈ 𝑋 ↦ 〈 𝐵 , 𝐴 〉 ) 𝑧 ↔ ∃ 𝑥 ∈ 𝑋 ( 𝑦 = 𝐵 ∧ 𝑧 = 𝐴 ) ) ) |
| 19 | 17 18 | bitr4d | ⊢ ( 𝜑 → ( 𝑦 ◡ 𝐹 𝑧 ↔ 𝑦 ran ( 𝑥 ∈ 𝑋 ↦ 〈 𝐵 , 𝐴 〉 ) 𝑧 ) ) |
| 20 | df-br | ⊢ ( 𝑦 ◡ 𝐹 𝑧 ↔ 〈 𝑦 , 𝑧 〉 ∈ ◡ 𝐹 ) | |
| 21 | df-br | ⊢ ( 𝑦 ran ( 𝑥 ∈ 𝑋 ↦ 〈 𝐵 , 𝐴 〉 ) 𝑧 ↔ 〈 𝑦 , 𝑧 〉 ∈ ran ( 𝑥 ∈ 𝑋 ↦ 〈 𝐵 , 𝐴 〉 ) ) | |
| 22 | 19 20 21 | 3bitr3g | ⊢ ( 𝜑 → ( 〈 𝑦 , 𝑧 〉 ∈ ◡ 𝐹 ↔ 〈 𝑦 , 𝑧 〉 ∈ ran ( 𝑥 ∈ 𝑋 ↦ 〈 𝐵 , 𝐴 〉 ) ) ) |
| 23 | 22 | eqrelrdv2 | ⊢ ( ( ( Rel ◡ 𝐹 ∧ Rel ran ( 𝑥 ∈ 𝑋 ↦ 〈 𝐵 , 𝐴 〉 ) ) ∧ 𝜑 ) → ◡ 𝐹 = ran ( 𝑥 ∈ 𝑋 ↦ 〈 𝐵 , 𝐴 〉 ) ) |
| 24 | 10 23 | mpancom | ⊢ ( 𝜑 → ◡ 𝐹 = ran ( 𝑥 ∈ 𝑋 ↦ 〈 𝐵 , 𝐴 〉 ) ) |