This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Converse of the relation F . (Contributed by Mario Carneiro, 23-Dec-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | flift.1 | |- F = ran ( x e. X |-> <. A , B >. ) |
|
| flift.2 | |- ( ( ph /\ x e. X ) -> A e. R ) |
||
| flift.3 | |- ( ( ph /\ x e. X ) -> B e. S ) |
||
| Assertion | fliftcnv | |- ( ph -> `' F = ran ( x e. X |-> <. B , A >. ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | flift.1 | |- F = ran ( x e. X |-> <. A , B >. ) |
|
| 2 | flift.2 | |- ( ( ph /\ x e. X ) -> A e. R ) |
|
| 3 | flift.3 | |- ( ( ph /\ x e. X ) -> B e. S ) |
|
| 4 | eqid | |- ran ( x e. X |-> <. B , A >. ) = ran ( x e. X |-> <. B , A >. ) |
|
| 5 | 4 3 2 | fliftrel | |- ( ph -> ran ( x e. X |-> <. B , A >. ) C_ ( S X. R ) ) |
| 6 | relxp | |- Rel ( S X. R ) |
|
| 7 | relss | |- ( ran ( x e. X |-> <. B , A >. ) C_ ( S X. R ) -> ( Rel ( S X. R ) -> Rel ran ( x e. X |-> <. B , A >. ) ) ) |
|
| 8 | 5 6 7 | mpisyl | |- ( ph -> Rel ran ( x e. X |-> <. B , A >. ) ) |
| 9 | relcnv | |- Rel `' F |
|
| 10 | 8 9 | jctil | |- ( ph -> ( Rel `' F /\ Rel ran ( x e. X |-> <. B , A >. ) ) ) |
| 11 | 1 2 3 | fliftel | |- ( ph -> ( z F y <-> E. x e. X ( z = A /\ y = B ) ) ) |
| 12 | vex | |- y e. _V |
|
| 13 | vex | |- z e. _V |
|
| 14 | 12 13 | brcnv | |- ( y `' F z <-> z F y ) |
| 15 | ancom | |- ( ( y = B /\ z = A ) <-> ( z = A /\ y = B ) ) |
|
| 16 | 15 | rexbii | |- ( E. x e. X ( y = B /\ z = A ) <-> E. x e. X ( z = A /\ y = B ) ) |
| 17 | 11 14 16 | 3bitr4g | |- ( ph -> ( y `' F z <-> E. x e. X ( y = B /\ z = A ) ) ) |
| 18 | 4 3 2 | fliftel | |- ( ph -> ( y ran ( x e. X |-> <. B , A >. ) z <-> E. x e. X ( y = B /\ z = A ) ) ) |
| 19 | 17 18 | bitr4d | |- ( ph -> ( y `' F z <-> y ran ( x e. X |-> <. B , A >. ) z ) ) |
| 20 | df-br | |- ( y `' F z <-> <. y , z >. e. `' F ) |
|
| 21 | df-br | |- ( y ran ( x e. X |-> <. B , A >. ) z <-> <. y , z >. e. ran ( x e. X |-> <. B , A >. ) ) |
|
| 22 | 19 20 21 | 3bitr3g | |- ( ph -> ( <. y , z >. e. `' F <-> <. y , z >. e. ran ( x e. X |-> <. B , A >. ) ) ) |
| 23 | 22 | eqrelrdv2 | |- ( ( ( Rel `' F /\ Rel ran ( x e. X |-> <. B , A >. ) ) /\ ph ) -> `' F = ran ( x e. X |-> <. B , A >. ) ) |
| 24 | 10 23 | mpancom | |- ( ph -> `' F = ran ( x e. X |-> <. B , A >. ) ) |