This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A limit point of a function is a cluster point of the function. (Contributed by Jeff Hankins, 28-Nov-2009) (Revised by Stefan O'Rear, 9-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | flfssfcf | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐿 ∈ ( Fil ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) → ( ( 𝐽 fLimf 𝐿 ) ‘ 𝐹 ) ⊆ ( ( 𝐽 fClusf 𝐿 ) ‘ 𝐹 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | flimfcls | ⊢ ( 𝐽 fLim ( ( 𝑋 FilMap 𝐹 ) ‘ 𝐿 ) ) ⊆ ( 𝐽 fClus ( ( 𝑋 FilMap 𝐹 ) ‘ 𝐿 ) ) | |
| 2 | 1 | a1i | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐿 ∈ ( Fil ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) → ( 𝐽 fLim ( ( 𝑋 FilMap 𝐹 ) ‘ 𝐿 ) ) ⊆ ( 𝐽 fClus ( ( 𝑋 FilMap 𝐹 ) ‘ 𝐿 ) ) ) |
| 3 | flfval | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐿 ∈ ( Fil ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) → ( ( 𝐽 fLimf 𝐿 ) ‘ 𝐹 ) = ( 𝐽 fLim ( ( 𝑋 FilMap 𝐹 ) ‘ 𝐿 ) ) ) | |
| 4 | fcfval | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐿 ∈ ( Fil ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) → ( ( 𝐽 fClusf 𝐿 ) ‘ 𝐹 ) = ( 𝐽 fClus ( ( 𝑋 FilMap 𝐹 ) ‘ 𝐿 ) ) ) | |
| 5 | 2 3 4 | 3sstr4d | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐿 ∈ ( Fil ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) → ( ( 𝐽 fLimf 𝐿 ) ‘ 𝐹 ) ⊆ ( ( 𝐽 fClusf 𝐿 ) ‘ 𝐹 ) ) |