This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A limit point of a function is a cluster point of the function. (Contributed by Jeff Hankins, 28-Nov-2009) (Revised by Stefan O'Rear, 9-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | flfssfcf | |- ( ( J e. ( TopOn ` X ) /\ L e. ( Fil ` Y ) /\ F : Y --> X ) -> ( ( J fLimf L ) ` F ) C_ ( ( J fClusf L ) ` F ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | flimfcls | |- ( J fLim ( ( X FilMap F ) ` L ) ) C_ ( J fClus ( ( X FilMap F ) ` L ) ) |
|
| 2 | 1 | a1i | |- ( ( J e. ( TopOn ` X ) /\ L e. ( Fil ` Y ) /\ F : Y --> X ) -> ( J fLim ( ( X FilMap F ) ` L ) ) C_ ( J fClus ( ( X FilMap F ) ` L ) ) ) |
| 3 | flfval | |- ( ( J e. ( TopOn ` X ) /\ L e. ( Fil ` Y ) /\ F : Y --> X ) -> ( ( J fLimf L ) ` F ) = ( J fLim ( ( X FilMap F ) ` L ) ) ) |
|
| 4 | fcfval | |- ( ( J e. ( TopOn ` X ) /\ L e. ( Fil ` Y ) /\ F : Y --> X ) -> ( ( J fClusf L ) ` F ) = ( J fClus ( ( X FilMap F ) ` L ) ) ) |
|
| 5 | 2 3 4 | 3sstr4d | |- ( ( J e. ( TopOn ` X ) /\ L e. ( Fil ` Y ) /\ F : Y --> X ) -> ( ( J fLimf L ) ` F ) C_ ( ( J fClusf L ) ` F ) ) |