This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An integer can be moved in and out of the floor of a sum. (Contributed by NM, 2-Jan-2009)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | flzadd | ⊢ ( ( 𝑁 ∈ ℤ ∧ 𝐴 ∈ ℝ ) → ( ⌊ ‘ ( 𝑁 + 𝐴 ) ) = ( 𝑁 + ( ⌊ ‘ 𝐴 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fladdz | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ ) → ( ⌊ ‘ ( 𝐴 + 𝑁 ) ) = ( ( ⌊ ‘ 𝐴 ) + 𝑁 ) ) | |
| 2 | recn | ⊢ ( 𝐴 ∈ ℝ → 𝐴 ∈ ℂ ) | |
| 3 | zcn | ⊢ ( 𝑁 ∈ ℤ → 𝑁 ∈ ℂ ) | |
| 4 | addcom | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℂ ) → ( 𝐴 + 𝑁 ) = ( 𝑁 + 𝐴 ) ) | |
| 5 | 2 3 4 | syl2an | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ ) → ( 𝐴 + 𝑁 ) = ( 𝑁 + 𝐴 ) ) |
| 6 | 5 | fveq2d | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ ) → ( ⌊ ‘ ( 𝐴 + 𝑁 ) ) = ( ⌊ ‘ ( 𝑁 + 𝐴 ) ) ) |
| 7 | reflcl | ⊢ ( 𝐴 ∈ ℝ → ( ⌊ ‘ 𝐴 ) ∈ ℝ ) | |
| 8 | 7 | recnd | ⊢ ( 𝐴 ∈ ℝ → ( ⌊ ‘ 𝐴 ) ∈ ℂ ) |
| 9 | addcom | ⊢ ( ( ( ⌊ ‘ 𝐴 ) ∈ ℂ ∧ 𝑁 ∈ ℂ ) → ( ( ⌊ ‘ 𝐴 ) + 𝑁 ) = ( 𝑁 + ( ⌊ ‘ 𝐴 ) ) ) | |
| 10 | 8 3 9 | syl2an | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ ) → ( ( ⌊ ‘ 𝐴 ) + 𝑁 ) = ( 𝑁 + ( ⌊ ‘ 𝐴 ) ) ) |
| 11 | 1 6 10 | 3eqtr3d | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ ) → ( ⌊ ‘ ( 𝑁 + 𝐴 ) ) = ( 𝑁 + ( ⌊ ‘ 𝐴 ) ) ) |
| 12 | 11 | ancoms | ⊢ ( ( 𝑁 ∈ ℤ ∧ 𝐴 ∈ ℝ ) → ( ⌊ ‘ ( 𝑁 + 𝐴 ) ) = ( 𝑁 + ( ⌊ ‘ 𝐴 ) ) ) |