This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Function whose value is the class of finite intersections of the elements of the argument. Note that the empty intersection being the universal class, hence a proper class, it cannot be an element of that class. Therefore, the function value is the class of nonempty finite intersections of elements of the argument (see elfi2 ). (Contributed by FL, 27-Apr-2008)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-fi | ⊢ fi = ( 𝑥 ∈ V ↦ { 𝑧 ∣ ∃ 𝑦 ∈ ( 𝒫 𝑥 ∩ Fin ) 𝑧 = ∩ 𝑦 } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cfi | ⊢ fi | |
| 1 | vx | ⊢ 𝑥 | |
| 2 | cvv | ⊢ V | |
| 3 | vz | ⊢ 𝑧 | |
| 4 | vy | ⊢ 𝑦 | |
| 5 | 1 | cv | ⊢ 𝑥 |
| 6 | 5 | cpw | ⊢ 𝒫 𝑥 |
| 7 | cfn | ⊢ Fin | |
| 8 | 6 7 | cin | ⊢ ( 𝒫 𝑥 ∩ Fin ) |
| 9 | 3 | cv | ⊢ 𝑧 |
| 10 | 4 | cv | ⊢ 𝑦 |
| 11 | 10 | cint | ⊢ ∩ 𝑦 |
| 12 | 9 11 | wceq | ⊢ 𝑧 = ∩ 𝑦 |
| 13 | 12 4 8 | wrex | ⊢ ∃ 𝑦 ∈ ( 𝒫 𝑥 ∩ Fin ) 𝑧 = ∩ 𝑦 |
| 14 | 13 3 | cab | ⊢ { 𝑧 ∣ ∃ 𝑦 ∈ ( 𝒫 𝑥 ∩ Fin ) 𝑧 = ∩ 𝑦 } |
| 15 | 1 2 14 | cmpt | ⊢ ( 𝑥 ∈ V ↦ { 𝑧 ∣ ∃ 𝑦 ∈ ( 𝒫 𝑥 ∩ Fin ) 𝑧 = ∩ 𝑦 } ) |
| 16 | 0 15 | wceq | ⊢ fi = ( 𝑥 ∈ V ↦ { 𝑧 ∣ ∃ 𝑦 ∈ ( 𝒫 𝑥 ∩ Fin ) 𝑧 = ∩ 𝑦 } ) |