This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The set of all the finite intersections of the elements of A . (Contributed by FL, 27-Apr-2008) (Revised by Mario Carneiro, 24-Nov-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fival | |- ( A e. V -> ( fi ` A ) = { y | E. x e. ( ~P A i^i Fin ) y = |^| x } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-fi | |- fi = ( z e. _V |-> { y | E. x e. ( ~P z i^i Fin ) y = |^| x } ) |
|
| 2 | pweq | |- ( z = A -> ~P z = ~P A ) |
|
| 3 | 2 | ineq1d | |- ( z = A -> ( ~P z i^i Fin ) = ( ~P A i^i Fin ) ) |
| 4 | 3 | rexeqdv | |- ( z = A -> ( E. x e. ( ~P z i^i Fin ) y = |^| x <-> E. x e. ( ~P A i^i Fin ) y = |^| x ) ) |
| 5 | 4 | abbidv | |- ( z = A -> { y | E. x e. ( ~P z i^i Fin ) y = |^| x } = { y | E. x e. ( ~P A i^i Fin ) y = |^| x } ) |
| 6 | elex | |- ( A e. V -> A e. _V ) |
|
| 7 | simpr | |- ( ( x e. ( ~P A i^i Fin ) /\ y = |^| x ) -> y = |^| x ) |
|
| 8 | elinel1 | |- ( x e. ( ~P A i^i Fin ) -> x e. ~P A ) |
|
| 9 | 8 | elpwid | |- ( x e. ( ~P A i^i Fin ) -> x C_ A ) |
| 10 | eqvisset | |- ( y = |^| x -> |^| x e. _V ) |
|
| 11 | intex | |- ( x =/= (/) <-> |^| x e. _V ) |
|
| 12 | 10 11 | sylibr | |- ( y = |^| x -> x =/= (/) ) |
| 13 | intssuni2 | |- ( ( x C_ A /\ x =/= (/) ) -> |^| x C_ U. A ) |
|
| 14 | 9 12 13 | syl2an | |- ( ( x e. ( ~P A i^i Fin ) /\ y = |^| x ) -> |^| x C_ U. A ) |
| 15 | 7 14 | eqsstrd | |- ( ( x e. ( ~P A i^i Fin ) /\ y = |^| x ) -> y C_ U. A ) |
| 16 | velpw | |- ( y e. ~P U. A <-> y C_ U. A ) |
|
| 17 | 15 16 | sylibr | |- ( ( x e. ( ~P A i^i Fin ) /\ y = |^| x ) -> y e. ~P U. A ) |
| 18 | 17 | rexlimiva | |- ( E. x e. ( ~P A i^i Fin ) y = |^| x -> y e. ~P U. A ) |
| 19 | 18 | abssi | |- { y | E. x e. ( ~P A i^i Fin ) y = |^| x } C_ ~P U. A |
| 20 | uniexg | |- ( A e. V -> U. A e. _V ) |
|
| 21 | 20 | pwexd | |- ( A e. V -> ~P U. A e. _V ) |
| 22 | ssexg | |- ( ( { y | E. x e. ( ~P A i^i Fin ) y = |^| x } C_ ~P U. A /\ ~P U. A e. _V ) -> { y | E. x e. ( ~P A i^i Fin ) y = |^| x } e. _V ) |
|
| 23 | 19 21 22 | sylancr | |- ( A e. V -> { y | E. x e. ( ~P A i^i Fin ) y = |^| x } e. _V ) |
| 24 | 1 5 6 23 | fvmptd3 | |- ( A e. V -> ( fi ` A ) = { y | E. x e. ( ~P A i^i Fin ) y = |^| x } ) |