This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A singleton is closed under finite intersections. (Contributed by Mario Carneiro, 3-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fisn | |- ( fi ` { A } ) = { A } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elsni | |- ( x e. { A } -> x = A ) |
|
| 2 | elsni | |- ( y e. { A } -> y = A ) |
|
| 3 | 1 2 | ineqan12d | |- ( ( x e. { A } /\ y e. { A } ) -> ( x i^i y ) = ( A i^i A ) ) |
| 4 | inidm | |- ( A i^i A ) = A |
|
| 5 | 3 4 | eqtrdi | |- ( ( x e. { A } /\ y e. { A } ) -> ( x i^i y ) = A ) |
| 6 | vex | |- x e. _V |
|
| 7 | 6 | inex1 | |- ( x i^i y ) e. _V |
| 8 | 7 | elsn | |- ( ( x i^i y ) e. { A } <-> ( x i^i y ) = A ) |
| 9 | 5 8 | sylibr | |- ( ( x e. { A } /\ y e. { A } ) -> ( x i^i y ) e. { A } ) |
| 10 | 9 | rgen2 | |- A. x e. { A } A. y e. { A } ( x i^i y ) e. { A } |
| 11 | snex | |- { A } e. _V |
|
| 12 | inficl | |- ( { A } e. _V -> ( A. x e. { A } A. y e. { A } ( x i^i y ) e. { A } <-> ( fi ` { A } ) = { A } ) ) |
|
| 13 | 11 12 | ax-mp | |- ( A. x e. { A } A. y e. { A } ( x i^i y ) e. { A } <-> ( fi ` { A } ) = { A } ) |
| 14 | 10 13 | mpbi | |- ( fi ` { A } ) = { A } |