This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If a function is zero outside of a finite set, it has finite support. (Contributed by Rohan Ridenour, 13-May-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | finnzfsuppd.1 | ⊢ ( 𝜑 → 𝐹 ∈ 𝑉 ) | |
| finnzfsuppd.2 | ⊢ ( 𝜑 → 𝐹 Fn 𝐷 ) | ||
| finnzfsuppd.3 | ⊢ ( 𝜑 → 𝑍 ∈ 𝑈 ) | ||
| finnzfsuppd.4 | ⊢ ( 𝜑 → 𝐴 ∈ Fin ) | ||
| finnzfsuppd.5 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) → ( 𝑥 ∈ 𝐴 ∨ ( 𝐹 ‘ 𝑥 ) = 𝑍 ) ) | ||
| Assertion | finnzfsuppd | ⊢ ( 𝜑 → 𝐹 finSupp 𝑍 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | finnzfsuppd.1 | ⊢ ( 𝜑 → 𝐹 ∈ 𝑉 ) | |
| 2 | finnzfsuppd.2 | ⊢ ( 𝜑 → 𝐹 Fn 𝐷 ) | |
| 3 | finnzfsuppd.3 | ⊢ ( 𝜑 → 𝑍 ∈ 𝑈 ) | |
| 4 | finnzfsuppd.4 | ⊢ ( 𝜑 → 𝐴 ∈ Fin ) | |
| 5 | finnzfsuppd.5 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) → ( 𝑥 ∈ 𝐴 ∨ ( 𝐹 ‘ 𝑥 ) = 𝑍 ) ) | |
| 6 | 1 2 | fndmexd | ⊢ ( 𝜑 → 𝐷 ∈ V ) |
| 7 | elsuppfn | ⊢ ( ( 𝐹 Fn 𝐷 ∧ 𝐷 ∈ V ∧ 𝑍 ∈ 𝑈 ) → ( 𝑥 ∈ ( 𝐹 supp 𝑍 ) ↔ ( 𝑥 ∈ 𝐷 ∧ ( 𝐹 ‘ 𝑥 ) ≠ 𝑍 ) ) ) | |
| 8 | 2 6 3 7 | syl3anc | ⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝐹 supp 𝑍 ) ↔ ( 𝑥 ∈ 𝐷 ∧ ( 𝐹 ‘ 𝑥 ) ≠ 𝑍 ) ) ) |
| 9 | 8 | biimpa | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐹 supp 𝑍 ) ) → ( 𝑥 ∈ 𝐷 ∧ ( 𝐹 ‘ 𝑥 ) ≠ 𝑍 ) ) |
| 10 | 9 | simpld | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐹 supp 𝑍 ) ) → 𝑥 ∈ 𝐷 ) |
| 11 | 10 5 | syldan | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐹 supp 𝑍 ) ) → ( 𝑥 ∈ 𝐴 ∨ ( 𝐹 ‘ 𝑥 ) = 𝑍 ) ) |
| 12 | 9 | simprd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐹 supp 𝑍 ) ) → ( 𝐹 ‘ 𝑥 ) ≠ 𝑍 ) |
| 13 | 12 | neneqd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐹 supp 𝑍 ) ) → ¬ ( 𝐹 ‘ 𝑥 ) = 𝑍 ) |
| 14 | 11 13 | olcnd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐹 supp 𝑍 ) ) → 𝑥 ∈ 𝐴 ) |
| 15 | 14 | ex | ⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝐹 supp 𝑍 ) → 𝑥 ∈ 𝐴 ) ) |
| 16 | 15 | ssrdv | ⊢ ( 𝜑 → ( 𝐹 supp 𝑍 ) ⊆ 𝐴 ) |
| 17 | 4 16 | ssfid | ⊢ ( 𝜑 → ( 𝐹 supp 𝑍 ) ∈ Fin ) |
| 18 | fnfun | ⊢ ( 𝐹 Fn 𝐷 → Fun 𝐹 ) | |
| 19 | 2 18 | syl | ⊢ ( 𝜑 → Fun 𝐹 ) |
| 20 | funisfsupp | ⊢ ( ( Fun 𝐹 ∧ 𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑈 ) → ( 𝐹 finSupp 𝑍 ↔ ( 𝐹 supp 𝑍 ) ∈ Fin ) ) | |
| 21 | 19 1 3 20 | syl3anc | ⊢ ( 𝜑 → ( 𝐹 finSupp 𝑍 ↔ ( 𝐹 supp 𝑍 ) ∈ Fin ) ) |
| 22 | 17 21 | mpbird | ⊢ ( 𝜑 → 𝐹 finSupp 𝑍 ) |