This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If a function is zero outside of a finite set, it has finite support. (Contributed by Rohan Ridenour, 13-May-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | finnzfsuppd.1 | |- ( ph -> F e. V ) |
|
| finnzfsuppd.2 | |- ( ph -> F Fn D ) |
||
| finnzfsuppd.3 | |- ( ph -> Z e. U ) |
||
| finnzfsuppd.4 | |- ( ph -> A e. Fin ) |
||
| finnzfsuppd.5 | |- ( ( ph /\ x e. D ) -> ( x e. A \/ ( F ` x ) = Z ) ) |
||
| Assertion | finnzfsuppd | |- ( ph -> F finSupp Z ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | finnzfsuppd.1 | |- ( ph -> F e. V ) |
|
| 2 | finnzfsuppd.2 | |- ( ph -> F Fn D ) |
|
| 3 | finnzfsuppd.3 | |- ( ph -> Z e. U ) |
|
| 4 | finnzfsuppd.4 | |- ( ph -> A e. Fin ) |
|
| 5 | finnzfsuppd.5 | |- ( ( ph /\ x e. D ) -> ( x e. A \/ ( F ` x ) = Z ) ) |
|
| 6 | 1 2 | fndmexd | |- ( ph -> D e. _V ) |
| 7 | elsuppfn | |- ( ( F Fn D /\ D e. _V /\ Z e. U ) -> ( x e. ( F supp Z ) <-> ( x e. D /\ ( F ` x ) =/= Z ) ) ) |
|
| 8 | 2 6 3 7 | syl3anc | |- ( ph -> ( x e. ( F supp Z ) <-> ( x e. D /\ ( F ` x ) =/= Z ) ) ) |
| 9 | 8 | biimpa | |- ( ( ph /\ x e. ( F supp Z ) ) -> ( x e. D /\ ( F ` x ) =/= Z ) ) |
| 10 | 9 | simpld | |- ( ( ph /\ x e. ( F supp Z ) ) -> x e. D ) |
| 11 | 10 5 | syldan | |- ( ( ph /\ x e. ( F supp Z ) ) -> ( x e. A \/ ( F ` x ) = Z ) ) |
| 12 | 9 | simprd | |- ( ( ph /\ x e. ( F supp Z ) ) -> ( F ` x ) =/= Z ) |
| 13 | 12 | neneqd | |- ( ( ph /\ x e. ( F supp Z ) ) -> -. ( F ` x ) = Z ) |
| 14 | 11 13 | olcnd | |- ( ( ph /\ x e. ( F supp Z ) ) -> x e. A ) |
| 15 | 14 | ex | |- ( ph -> ( x e. ( F supp Z ) -> x e. A ) ) |
| 16 | 15 | ssrdv | |- ( ph -> ( F supp Z ) C_ A ) |
| 17 | 4 16 | ssfid | |- ( ph -> ( F supp Z ) e. Fin ) |
| 18 | fnfun | |- ( F Fn D -> Fun F ) |
|
| 19 | 2 18 | syl | |- ( ph -> Fun F ) |
| 20 | funisfsupp | |- ( ( Fun F /\ F e. V /\ Z e. U ) -> ( F finSupp Z <-> ( F supp Z ) e. Fin ) ) |
|
| 21 | 19 1 3 20 | syl3anc | |- ( ph -> ( F finSupp Z <-> ( F supp Z ) e. Fin ) ) |
| 22 | 17 21 | mpbird | |- ( ph -> F finSupp Z ) |