This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Every III-finite set is IV-finite. (Contributed by Stefan O'Rear, 30-Oct-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fin34 | ⊢ ( 𝐴 ∈ FinIII → 𝐴 ∈ FinIV ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isfin3 | ⊢ ( 𝐴 ∈ FinIII ↔ 𝒫 𝐴 ∈ FinIV ) | |
| 2 | isfin4-2 | ⊢ ( 𝒫 𝐴 ∈ FinIV → ( 𝒫 𝐴 ∈ FinIV ↔ ¬ ω ≼ 𝒫 𝐴 ) ) | |
| 3 | 2 | ibi | ⊢ ( 𝒫 𝐴 ∈ FinIV → ¬ ω ≼ 𝒫 𝐴 ) |
| 4 | reldom | ⊢ Rel ≼ | |
| 5 | 4 | brrelex2i | ⊢ ( ω ≼ 𝐴 → 𝐴 ∈ V ) |
| 6 | canth2g | ⊢ ( 𝐴 ∈ V → 𝐴 ≺ 𝒫 𝐴 ) | |
| 7 | 5 6 | syl | ⊢ ( ω ≼ 𝐴 → 𝐴 ≺ 𝒫 𝐴 ) |
| 8 | domsdomtr | ⊢ ( ( ω ≼ 𝐴 ∧ 𝐴 ≺ 𝒫 𝐴 ) → ω ≺ 𝒫 𝐴 ) | |
| 9 | 7 8 | mpdan | ⊢ ( ω ≼ 𝐴 → ω ≺ 𝒫 𝐴 ) |
| 10 | sdomdom | ⊢ ( ω ≺ 𝒫 𝐴 → ω ≼ 𝒫 𝐴 ) | |
| 11 | 9 10 | syl | ⊢ ( ω ≼ 𝐴 → ω ≼ 𝒫 𝐴 ) |
| 12 | 3 11 | nsyl | ⊢ ( 𝒫 𝐴 ∈ FinIV → ¬ ω ≼ 𝐴 ) |
| 13 | 1 12 | sylbi | ⊢ ( 𝐴 ∈ FinIII → ¬ ω ≼ 𝐴 ) |
| 14 | isfin4-2 | ⊢ ( 𝐴 ∈ FinIII → ( 𝐴 ∈ FinIV ↔ ¬ ω ≼ 𝐴 ) ) | |
| 15 | 13 14 | mpbird | ⊢ ( 𝐴 ∈ FinIII → 𝐴 ∈ FinIV ) |