This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Every III-finite set is IV-finite. (Contributed by Stefan O'Rear, 30-Oct-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fin34 | |- ( A e. Fin3 -> A e. Fin4 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isfin3 | |- ( A e. Fin3 <-> ~P A e. Fin4 ) |
|
| 2 | isfin4-2 | |- ( ~P A e. Fin4 -> ( ~P A e. Fin4 <-> -. _om ~<_ ~P A ) ) |
|
| 3 | 2 | ibi | |- ( ~P A e. Fin4 -> -. _om ~<_ ~P A ) |
| 4 | reldom | |- Rel ~<_ |
|
| 5 | 4 | brrelex2i | |- ( _om ~<_ A -> A e. _V ) |
| 6 | canth2g | |- ( A e. _V -> A ~< ~P A ) |
|
| 7 | 5 6 | syl | |- ( _om ~<_ A -> A ~< ~P A ) |
| 8 | domsdomtr | |- ( ( _om ~<_ A /\ A ~< ~P A ) -> _om ~< ~P A ) |
|
| 9 | 7 8 | mpdan | |- ( _om ~<_ A -> _om ~< ~P A ) |
| 10 | sdomdom | |- ( _om ~< ~P A -> _om ~<_ ~P A ) |
|
| 11 | 9 10 | syl | |- ( _om ~<_ A -> _om ~<_ ~P A ) |
| 12 | 3 11 | nsyl | |- ( ~P A e. Fin4 -> -. _om ~<_ A ) |
| 13 | 1 12 | sylbi | |- ( A e. Fin3 -> -. _om ~<_ A ) |
| 14 | isfin4-2 | |- ( A e. Fin3 -> ( A e. Fin4 <-> -. _om ~<_ A ) ) |
|
| 15 | 13 14 | mpbird | |- ( A e. Fin3 -> A e. Fin4 ) |