This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for fin23 . The first set in U to see an input set is either contained in it or disjoint from it. (Contributed by Stefan O'Rear, 1-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | fin23lem.a | ⊢ 𝑈 = seqω ( ( 𝑖 ∈ ω , 𝑢 ∈ V ↦ if ( ( ( 𝑡 ‘ 𝑖 ) ∩ 𝑢 ) = ∅ , 𝑢 , ( ( 𝑡 ‘ 𝑖 ) ∩ 𝑢 ) ) ) , ∪ ran 𝑡 ) | |
| Assertion | fin23lem19 | ⊢ ( 𝐴 ∈ ω → ( ( 𝑈 ‘ suc 𝐴 ) ⊆ ( 𝑡 ‘ 𝐴 ) ∨ ( ( 𝑈 ‘ suc 𝐴 ) ∩ ( 𝑡 ‘ 𝐴 ) ) = ∅ ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fin23lem.a | ⊢ 𝑈 = seqω ( ( 𝑖 ∈ ω , 𝑢 ∈ V ↦ if ( ( ( 𝑡 ‘ 𝑖 ) ∩ 𝑢 ) = ∅ , 𝑢 , ( ( 𝑡 ‘ 𝑖 ) ∩ 𝑢 ) ) ) , ∪ ran 𝑡 ) | |
| 2 | 1 | fin23lem12 | ⊢ ( 𝐴 ∈ ω → ( 𝑈 ‘ suc 𝐴 ) = if ( ( ( 𝑡 ‘ 𝐴 ) ∩ ( 𝑈 ‘ 𝐴 ) ) = ∅ , ( 𝑈 ‘ 𝐴 ) , ( ( 𝑡 ‘ 𝐴 ) ∩ ( 𝑈 ‘ 𝐴 ) ) ) ) |
| 3 | eqif | ⊢ ( ( 𝑈 ‘ suc 𝐴 ) = if ( ( ( 𝑡 ‘ 𝐴 ) ∩ ( 𝑈 ‘ 𝐴 ) ) = ∅ , ( 𝑈 ‘ 𝐴 ) , ( ( 𝑡 ‘ 𝐴 ) ∩ ( 𝑈 ‘ 𝐴 ) ) ) ↔ ( ( ( ( 𝑡 ‘ 𝐴 ) ∩ ( 𝑈 ‘ 𝐴 ) ) = ∅ ∧ ( 𝑈 ‘ suc 𝐴 ) = ( 𝑈 ‘ 𝐴 ) ) ∨ ( ¬ ( ( 𝑡 ‘ 𝐴 ) ∩ ( 𝑈 ‘ 𝐴 ) ) = ∅ ∧ ( 𝑈 ‘ suc 𝐴 ) = ( ( 𝑡 ‘ 𝐴 ) ∩ ( 𝑈 ‘ 𝐴 ) ) ) ) ) | |
| 4 | 2 3 | sylib | ⊢ ( 𝐴 ∈ ω → ( ( ( ( 𝑡 ‘ 𝐴 ) ∩ ( 𝑈 ‘ 𝐴 ) ) = ∅ ∧ ( 𝑈 ‘ suc 𝐴 ) = ( 𝑈 ‘ 𝐴 ) ) ∨ ( ¬ ( ( 𝑡 ‘ 𝐴 ) ∩ ( 𝑈 ‘ 𝐴 ) ) = ∅ ∧ ( 𝑈 ‘ suc 𝐴 ) = ( ( 𝑡 ‘ 𝐴 ) ∩ ( 𝑈 ‘ 𝐴 ) ) ) ) ) |
| 5 | incom | ⊢ ( ( 𝑈 ‘ suc 𝐴 ) ∩ ( 𝑡 ‘ 𝐴 ) ) = ( ( 𝑡 ‘ 𝐴 ) ∩ ( 𝑈 ‘ suc 𝐴 ) ) | |
| 6 | ineq2 | ⊢ ( ( 𝑈 ‘ suc 𝐴 ) = ( 𝑈 ‘ 𝐴 ) → ( ( 𝑡 ‘ 𝐴 ) ∩ ( 𝑈 ‘ suc 𝐴 ) ) = ( ( 𝑡 ‘ 𝐴 ) ∩ ( 𝑈 ‘ 𝐴 ) ) ) | |
| 7 | 6 | eqeq1d | ⊢ ( ( 𝑈 ‘ suc 𝐴 ) = ( 𝑈 ‘ 𝐴 ) → ( ( ( 𝑡 ‘ 𝐴 ) ∩ ( 𝑈 ‘ suc 𝐴 ) ) = ∅ ↔ ( ( 𝑡 ‘ 𝐴 ) ∩ ( 𝑈 ‘ 𝐴 ) ) = ∅ ) ) |
| 8 | 7 | biimparc | ⊢ ( ( ( ( 𝑡 ‘ 𝐴 ) ∩ ( 𝑈 ‘ 𝐴 ) ) = ∅ ∧ ( 𝑈 ‘ suc 𝐴 ) = ( 𝑈 ‘ 𝐴 ) ) → ( ( 𝑡 ‘ 𝐴 ) ∩ ( 𝑈 ‘ suc 𝐴 ) ) = ∅ ) |
| 9 | 5 8 | eqtrid | ⊢ ( ( ( ( 𝑡 ‘ 𝐴 ) ∩ ( 𝑈 ‘ 𝐴 ) ) = ∅ ∧ ( 𝑈 ‘ suc 𝐴 ) = ( 𝑈 ‘ 𝐴 ) ) → ( ( 𝑈 ‘ suc 𝐴 ) ∩ ( 𝑡 ‘ 𝐴 ) ) = ∅ ) |
| 10 | inss1 | ⊢ ( ( 𝑡 ‘ 𝐴 ) ∩ ( 𝑈 ‘ 𝐴 ) ) ⊆ ( 𝑡 ‘ 𝐴 ) | |
| 11 | sseq1 | ⊢ ( ( 𝑈 ‘ suc 𝐴 ) = ( ( 𝑡 ‘ 𝐴 ) ∩ ( 𝑈 ‘ 𝐴 ) ) → ( ( 𝑈 ‘ suc 𝐴 ) ⊆ ( 𝑡 ‘ 𝐴 ) ↔ ( ( 𝑡 ‘ 𝐴 ) ∩ ( 𝑈 ‘ 𝐴 ) ) ⊆ ( 𝑡 ‘ 𝐴 ) ) ) | |
| 12 | 10 11 | mpbiri | ⊢ ( ( 𝑈 ‘ suc 𝐴 ) = ( ( 𝑡 ‘ 𝐴 ) ∩ ( 𝑈 ‘ 𝐴 ) ) → ( 𝑈 ‘ suc 𝐴 ) ⊆ ( 𝑡 ‘ 𝐴 ) ) |
| 13 | 12 | adantl | ⊢ ( ( ¬ ( ( 𝑡 ‘ 𝐴 ) ∩ ( 𝑈 ‘ 𝐴 ) ) = ∅ ∧ ( 𝑈 ‘ suc 𝐴 ) = ( ( 𝑡 ‘ 𝐴 ) ∩ ( 𝑈 ‘ 𝐴 ) ) ) → ( 𝑈 ‘ suc 𝐴 ) ⊆ ( 𝑡 ‘ 𝐴 ) ) |
| 14 | 9 13 | orim12i | ⊢ ( ( ( ( ( 𝑡 ‘ 𝐴 ) ∩ ( 𝑈 ‘ 𝐴 ) ) = ∅ ∧ ( 𝑈 ‘ suc 𝐴 ) = ( 𝑈 ‘ 𝐴 ) ) ∨ ( ¬ ( ( 𝑡 ‘ 𝐴 ) ∩ ( 𝑈 ‘ 𝐴 ) ) = ∅ ∧ ( 𝑈 ‘ suc 𝐴 ) = ( ( 𝑡 ‘ 𝐴 ) ∩ ( 𝑈 ‘ 𝐴 ) ) ) ) → ( ( ( 𝑈 ‘ suc 𝐴 ) ∩ ( 𝑡 ‘ 𝐴 ) ) = ∅ ∨ ( 𝑈 ‘ suc 𝐴 ) ⊆ ( 𝑡 ‘ 𝐴 ) ) ) |
| 15 | 4 14 | syl | ⊢ ( 𝐴 ∈ ω → ( ( ( 𝑈 ‘ suc 𝐴 ) ∩ ( 𝑡 ‘ 𝐴 ) ) = ∅ ∨ ( 𝑈 ‘ suc 𝐴 ) ⊆ ( 𝑡 ‘ 𝐴 ) ) ) |
| 16 | 15 | orcomd | ⊢ ( 𝐴 ∈ ω → ( ( 𝑈 ‘ suc 𝐴 ) ⊆ ( 𝑡 ‘ 𝐴 ) ∨ ( ( 𝑈 ‘ suc 𝐴 ) ∩ ( 𝑡 ‘ 𝐴 ) ) = ∅ ) ) |