This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A finite set has a minimum under a total order. (Contributed by AV, 6-Oct-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fimin2g | |- ( ( R Or A /\ A e. Fin /\ A =/= (/) ) -> E. x e. A A. y e. A -. y R x ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3simpc | |- ( ( R Or A /\ A e. Fin /\ A =/= (/) ) -> ( A e. Fin /\ A =/= (/) ) ) |
|
| 2 | sopo | |- ( R Or A -> R Po A ) |
|
| 3 | 2 | 3ad2ant1 | |- ( ( R Or A /\ A e. Fin /\ A =/= (/) ) -> R Po A ) |
| 4 | simp2 | |- ( ( R Or A /\ A e. Fin /\ A =/= (/) ) -> A e. Fin ) |
|
| 5 | frfi | |- ( ( R Po A /\ A e. Fin ) -> R Fr A ) |
|
| 6 | 3 4 5 | syl2anc | |- ( ( R Or A /\ A e. Fin /\ A =/= (/) ) -> R Fr A ) |
| 7 | ssid | |- A C_ A |
|
| 8 | fri | |- ( ( ( A e. Fin /\ R Fr A ) /\ ( A C_ A /\ A =/= (/) ) ) -> E. x e. A A. y e. A -. y R x ) |
|
| 9 | 7 8 | mpanr1 | |- ( ( ( A e. Fin /\ R Fr A ) /\ A =/= (/) ) -> E. x e. A A. y e. A -. y R x ) |
| 10 | 9 | an32s | |- ( ( ( A e. Fin /\ A =/= (/) ) /\ R Fr A ) -> E. x e. A A. y e. A -. y R x ) |
| 11 | 1 6 10 | syl2anc | |- ( ( R Or A /\ A e. Fin /\ A =/= (/) ) -> E. x e. A A. y e. A -. y R x ) |