This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The set of finite intersections of the empty set. (Contributed by Mario Carneiro, 30-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fi0 | ⊢ ( fi ‘ ∅ ) = ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0ex | ⊢ ∅ ∈ V | |
| 2 | fival | ⊢ ( ∅ ∈ V → ( fi ‘ ∅ ) = { 𝑦 ∣ ∃ 𝑥 ∈ ( 𝒫 ∅ ∩ Fin ) 𝑦 = ∩ 𝑥 } ) | |
| 3 | 1 2 | ax-mp | ⊢ ( fi ‘ ∅ ) = { 𝑦 ∣ ∃ 𝑥 ∈ ( 𝒫 ∅ ∩ Fin ) 𝑦 = ∩ 𝑥 } |
| 4 | vprc | ⊢ ¬ V ∈ V | |
| 5 | id | ⊢ ( 𝑦 = ∩ 𝑥 → 𝑦 = ∩ 𝑥 ) | |
| 6 | elinel1 | ⊢ ( 𝑥 ∈ ( 𝒫 ∅ ∩ Fin ) → 𝑥 ∈ 𝒫 ∅ ) | |
| 7 | elpwi | ⊢ ( 𝑥 ∈ 𝒫 ∅ → 𝑥 ⊆ ∅ ) | |
| 8 | ss0 | ⊢ ( 𝑥 ⊆ ∅ → 𝑥 = ∅ ) | |
| 9 | 6 7 8 | 3syl | ⊢ ( 𝑥 ∈ ( 𝒫 ∅ ∩ Fin ) → 𝑥 = ∅ ) |
| 10 | 9 | inteqd | ⊢ ( 𝑥 ∈ ( 𝒫 ∅ ∩ Fin ) → ∩ 𝑥 = ∩ ∅ ) |
| 11 | int0 | ⊢ ∩ ∅ = V | |
| 12 | 10 11 | eqtrdi | ⊢ ( 𝑥 ∈ ( 𝒫 ∅ ∩ Fin ) → ∩ 𝑥 = V ) |
| 13 | 5 12 | sylan9eqr | ⊢ ( ( 𝑥 ∈ ( 𝒫 ∅ ∩ Fin ) ∧ 𝑦 = ∩ 𝑥 ) → 𝑦 = V ) |
| 14 | 13 | rexlimiva | ⊢ ( ∃ 𝑥 ∈ ( 𝒫 ∅ ∩ Fin ) 𝑦 = ∩ 𝑥 → 𝑦 = V ) |
| 15 | vex | ⊢ 𝑦 ∈ V | |
| 16 | 14 15 | eqeltrrdi | ⊢ ( ∃ 𝑥 ∈ ( 𝒫 ∅ ∩ Fin ) 𝑦 = ∩ 𝑥 → V ∈ V ) |
| 17 | 4 16 | mto | ⊢ ¬ ∃ 𝑥 ∈ ( 𝒫 ∅ ∩ Fin ) 𝑦 = ∩ 𝑥 |
| 18 | 17 | abf | ⊢ { 𝑦 ∣ ∃ 𝑥 ∈ ( 𝒫 ∅ ∩ Fin ) 𝑦 = ∩ 𝑥 } = ∅ |
| 19 | 3 18 | eqtri | ⊢ ( fi ‘ ∅ ) = ∅ |