This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The set of finite intersections of the empty set. (Contributed by Mario Carneiro, 30-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fi0 | |- ( fi ` (/) ) = (/) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0ex | |- (/) e. _V |
|
| 2 | fival | |- ( (/) e. _V -> ( fi ` (/) ) = { y | E. x e. ( ~P (/) i^i Fin ) y = |^| x } ) |
|
| 3 | 1 2 | ax-mp | |- ( fi ` (/) ) = { y | E. x e. ( ~P (/) i^i Fin ) y = |^| x } |
| 4 | vprc | |- -. _V e. _V |
|
| 5 | id | |- ( y = |^| x -> y = |^| x ) |
|
| 6 | elinel1 | |- ( x e. ( ~P (/) i^i Fin ) -> x e. ~P (/) ) |
|
| 7 | elpwi | |- ( x e. ~P (/) -> x C_ (/) ) |
|
| 8 | ss0 | |- ( x C_ (/) -> x = (/) ) |
|
| 9 | 6 7 8 | 3syl | |- ( x e. ( ~P (/) i^i Fin ) -> x = (/) ) |
| 10 | 9 | inteqd | |- ( x e. ( ~P (/) i^i Fin ) -> |^| x = |^| (/) ) |
| 11 | int0 | |- |^| (/) = _V |
|
| 12 | 10 11 | eqtrdi | |- ( x e. ( ~P (/) i^i Fin ) -> |^| x = _V ) |
| 13 | 5 12 | sylan9eqr | |- ( ( x e. ( ~P (/) i^i Fin ) /\ y = |^| x ) -> y = _V ) |
| 14 | 13 | rexlimiva | |- ( E. x e. ( ~P (/) i^i Fin ) y = |^| x -> y = _V ) |
| 15 | vex | |- y e. _V |
|
| 16 | 14 15 | eqeltrrdi | |- ( E. x e. ( ~P (/) i^i Fin ) y = |^| x -> _V e. _V ) |
| 17 | 4 16 | mto | |- -. E. x e. ( ~P (/) i^i Fin ) y = |^| x |
| 18 | 17 | abf | |- { y | E. x e. ( ~P (/) i^i Fin ) y = |^| x } = (/) |
| 19 | 3 18 | eqtri | |- ( fi ` (/) ) = (/) |