This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A condition for a filter to be finer than another involving their filter bases. (Contributed by Jeff Hankins, 3-Sep-2009) (Revised by Stefan O'Rear, 2-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fgss2 | ⊢ ( ( 𝐹 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐺 ∈ ( fBas ‘ 𝑋 ) ) → ( ( 𝑋 filGen 𝐹 ) ⊆ ( 𝑋 filGen 𝐺 ) ↔ ∀ 𝑥 ∈ 𝐹 ∃ 𝑦 ∈ 𝐺 𝑦 ⊆ 𝑥 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssfg | ⊢ ( 𝐹 ∈ ( fBas ‘ 𝑋 ) → 𝐹 ⊆ ( 𝑋 filGen 𝐹 ) ) | |
| 2 | 1 | adantr | ⊢ ( ( 𝐹 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐺 ∈ ( fBas ‘ 𝑋 ) ) → 𝐹 ⊆ ( 𝑋 filGen 𝐹 ) ) |
| 3 | 2 | sseld | ⊢ ( ( 𝐹 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐺 ∈ ( fBas ‘ 𝑋 ) ) → ( 𝑥 ∈ 𝐹 → 𝑥 ∈ ( 𝑋 filGen 𝐹 ) ) ) |
| 4 | ssel2 | ⊢ ( ( ( 𝑋 filGen 𝐹 ) ⊆ ( 𝑋 filGen 𝐺 ) ∧ 𝑥 ∈ ( 𝑋 filGen 𝐹 ) ) → 𝑥 ∈ ( 𝑋 filGen 𝐺 ) ) | |
| 5 | elfg | ⊢ ( 𝐺 ∈ ( fBas ‘ 𝑋 ) → ( 𝑥 ∈ ( 𝑋 filGen 𝐺 ) ↔ ( 𝑥 ⊆ 𝑋 ∧ ∃ 𝑦 ∈ 𝐺 𝑦 ⊆ 𝑥 ) ) ) | |
| 6 | simpr | ⊢ ( ( 𝑥 ⊆ 𝑋 ∧ ∃ 𝑦 ∈ 𝐺 𝑦 ⊆ 𝑥 ) → ∃ 𝑦 ∈ 𝐺 𝑦 ⊆ 𝑥 ) | |
| 7 | 5 6 | biimtrdi | ⊢ ( 𝐺 ∈ ( fBas ‘ 𝑋 ) → ( 𝑥 ∈ ( 𝑋 filGen 𝐺 ) → ∃ 𝑦 ∈ 𝐺 𝑦 ⊆ 𝑥 ) ) |
| 8 | 7 | adantl | ⊢ ( ( 𝐹 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐺 ∈ ( fBas ‘ 𝑋 ) ) → ( 𝑥 ∈ ( 𝑋 filGen 𝐺 ) → ∃ 𝑦 ∈ 𝐺 𝑦 ⊆ 𝑥 ) ) |
| 9 | 4 8 | syl5 | ⊢ ( ( 𝐹 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐺 ∈ ( fBas ‘ 𝑋 ) ) → ( ( ( 𝑋 filGen 𝐹 ) ⊆ ( 𝑋 filGen 𝐺 ) ∧ 𝑥 ∈ ( 𝑋 filGen 𝐹 ) ) → ∃ 𝑦 ∈ 𝐺 𝑦 ⊆ 𝑥 ) ) |
| 10 | 9 | expd | ⊢ ( ( 𝐹 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐺 ∈ ( fBas ‘ 𝑋 ) ) → ( ( 𝑋 filGen 𝐹 ) ⊆ ( 𝑋 filGen 𝐺 ) → ( 𝑥 ∈ ( 𝑋 filGen 𝐹 ) → ∃ 𝑦 ∈ 𝐺 𝑦 ⊆ 𝑥 ) ) ) |
| 11 | 3 10 | syl5d | ⊢ ( ( 𝐹 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐺 ∈ ( fBas ‘ 𝑋 ) ) → ( ( 𝑋 filGen 𝐹 ) ⊆ ( 𝑋 filGen 𝐺 ) → ( 𝑥 ∈ 𝐹 → ∃ 𝑦 ∈ 𝐺 𝑦 ⊆ 𝑥 ) ) ) |
| 12 | 11 | ralrimdv | ⊢ ( ( 𝐹 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐺 ∈ ( fBas ‘ 𝑋 ) ) → ( ( 𝑋 filGen 𝐹 ) ⊆ ( 𝑋 filGen 𝐺 ) → ∀ 𝑥 ∈ 𝐹 ∃ 𝑦 ∈ 𝐺 𝑦 ⊆ 𝑥 ) ) |
| 13 | sseq2 | ⊢ ( 𝑥 = 𝑢 → ( 𝑦 ⊆ 𝑥 ↔ 𝑦 ⊆ 𝑢 ) ) | |
| 14 | 13 | rexbidv | ⊢ ( 𝑥 = 𝑢 → ( ∃ 𝑦 ∈ 𝐺 𝑦 ⊆ 𝑥 ↔ ∃ 𝑦 ∈ 𝐺 𝑦 ⊆ 𝑢 ) ) |
| 15 | 14 | rspcv | ⊢ ( 𝑢 ∈ 𝐹 → ( ∀ 𝑥 ∈ 𝐹 ∃ 𝑦 ∈ 𝐺 𝑦 ⊆ 𝑥 → ∃ 𝑦 ∈ 𝐺 𝑦 ⊆ 𝑢 ) ) |
| 16 | 15 | adantl | ⊢ ( ( ( 𝐹 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐺 ∈ ( fBas ‘ 𝑋 ) ) ∧ 𝑢 ∈ 𝐹 ) → ( ∀ 𝑥 ∈ 𝐹 ∃ 𝑦 ∈ 𝐺 𝑦 ⊆ 𝑥 → ∃ 𝑦 ∈ 𝐺 𝑦 ⊆ 𝑢 ) ) |
| 17 | sstr | ⊢ ( ( 𝑦 ⊆ 𝑢 ∧ 𝑢 ⊆ 𝑡 ) → 𝑦 ⊆ 𝑡 ) | |
| 18 | sseq1 | ⊢ ( 𝑣 = 𝑦 → ( 𝑣 ⊆ 𝑡 ↔ 𝑦 ⊆ 𝑡 ) ) | |
| 19 | 18 | rspcev | ⊢ ( ( 𝑦 ∈ 𝐺 ∧ 𝑦 ⊆ 𝑡 ) → ∃ 𝑣 ∈ 𝐺 𝑣 ⊆ 𝑡 ) |
| 20 | 19 | adantl | ⊢ ( ( ( ( 𝐹 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐺 ∈ ( fBas ‘ 𝑋 ) ) ∧ 𝑢 ∈ 𝐹 ) ∧ ( 𝑦 ∈ 𝐺 ∧ 𝑦 ⊆ 𝑡 ) ) → ∃ 𝑣 ∈ 𝐺 𝑣 ⊆ 𝑡 ) |
| 21 | 20 | a1d | ⊢ ( ( ( ( 𝐹 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐺 ∈ ( fBas ‘ 𝑋 ) ) ∧ 𝑢 ∈ 𝐹 ) ∧ ( 𝑦 ∈ 𝐺 ∧ 𝑦 ⊆ 𝑡 ) ) → ( 𝑡 ⊆ 𝑋 → ∃ 𝑣 ∈ 𝐺 𝑣 ⊆ 𝑡 ) ) |
| 22 | 17 21 | sylanr2 | ⊢ ( ( ( ( 𝐹 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐺 ∈ ( fBas ‘ 𝑋 ) ) ∧ 𝑢 ∈ 𝐹 ) ∧ ( 𝑦 ∈ 𝐺 ∧ ( 𝑦 ⊆ 𝑢 ∧ 𝑢 ⊆ 𝑡 ) ) ) → ( 𝑡 ⊆ 𝑋 → ∃ 𝑣 ∈ 𝐺 𝑣 ⊆ 𝑡 ) ) |
| 23 | 22 | ancld | ⊢ ( ( ( ( 𝐹 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐺 ∈ ( fBas ‘ 𝑋 ) ) ∧ 𝑢 ∈ 𝐹 ) ∧ ( 𝑦 ∈ 𝐺 ∧ ( 𝑦 ⊆ 𝑢 ∧ 𝑢 ⊆ 𝑡 ) ) ) → ( 𝑡 ⊆ 𝑋 → ( 𝑡 ⊆ 𝑋 ∧ ∃ 𝑣 ∈ 𝐺 𝑣 ⊆ 𝑡 ) ) ) |
| 24 | 23 | exp45 | ⊢ ( ( ( 𝐹 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐺 ∈ ( fBas ‘ 𝑋 ) ) ∧ 𝑢 ∈ 𝐹 ) → ( 𝑦 ∈ 𝐺 → ( 𝑦 ⊆ 𝑢 → ( 𝑢 ⊆ 𝑡 → ( 𝑡 ⊆ 𝑋 → ( 𝑡 ⊆ 𝑋 ∧ ∃ 𝑣 ∈ 𝐺 𝑣 ⊆ 𝑡 ) ) ) ) ) ) |
| 25 | 24 | rexlimdv | ⊢ ( ( ( 𝐹 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐺 ∈ ( fBas ‘ 𝑋 ) ) ∧ 𝑢 ∈ 𝐹 ) → ( ∃ 𝑦 ∈ 𝐺 𝑦 ⊆ 𝑢 → ( 𝑢 ⊆ 𝑡 → ( 𝑡 ⊆ 𝑋 → ( 𝑡 ⊆ 𝑋 ∧ ∃ 𝑣 ∈ 𝐺 𝑣 ⊆ 𝑡 ) ) ) ) ) |
| 26 | 16 25 | syld | ⊢ ( ( ( 𝐹 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐺 ∈ ( fBas ‘ 𝑋 ) ) ∧ 𝑢 ∈ 𝐹 ) → ( ∀ 𝑥 ∈ 𝐹 ∃ 𝑦 ∈ 𝐺 𝑦 ⊆ 𝑥 → ( 𝑢 ⊆ 𝑡 → ( 𝑡 ⊆ 𝑋 → ( 𝑡 ⊆ 𝑋 ∧ ∃ 𝑣 ∈ 𝐺 𝑣 ⊆ 𝑡 ) ) ) ) ) |
| 27 | 26 | impancom | ⊢ ( ( ( 𝐹 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐺 ∈ ( fBas ‘ 𝑋 ) ) ∧ ∀ 𝑥 ∈ 𝐹 ∃ 𝑦 ∈ 𝐺 𝑦 ⊆ 𝑥 ) → ( 𝑢 ∈ 𝐹 → ( 𝑢 ⊆ 𝑡 → ( 𝑡 ⊆ 𝑋 → ( 𝑡 ⊆ 𝑋 ∧ ∃ 𝑣 ∈ 𝐺 𝑣 ⊆ 𝑡 ) ) ) ) ) |
| 28 | 27 | rexlimdv | ⊢ ( ( ( 𝐹 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐺 ∈ ( fBas ‘ 𝑋 ) ) ∧ ∀ 𝑥 ∈ 𝐹 ∃ 𝑦 ∈ 𝐺 𝑦 ⊆ 𝑥 ) → ( ∃ 𝑢 ∈ 𝐹 𝑢 ⊆ 𝑡 → ( 𝑡 ⊆ 𝑋 → ( 𝑡 ⊆ 𝑋 ∧ ∃ 𝑣 ∈ 𝐺 𝑣 ⊆ 𝑡 ) ) ) ) |
| 29 | 28 | impcomd | ⊢ ( ( ( 𝐹 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐺 ∈ ( fBas ‘ 𝑋 ) ) ∧ ∀ 𝑥 ∈ 𝐹 ∃ 𝑦 ∈ 𝐺 𝑦 ⊆ 𝑥 ) → ( ( 𝑡 ⊆ 𝑋 ∧ ∃ 𝑢 ∈ 𝐹 𝑢 ⊆ 𝑡 ) → ( 𝑡 ⊆ 𝑋 ∧ ∃ 𝑣 ∈ 𝐺 𝑣 ⊆ 𝑡 ) ) ) |
| 30 | elfg | ⊢ ( 𝐹 ∈ ( fBas ‘ 𝑋 ) → ( 𝑡 ∈ ( 𝑋 filGen 𝐹 ) ↔ ( 𝑡 ⊆ 𝑋 ∧ ∃ 𝑢 ∈ 𝐹 𝑢 ⊆ 𝑡 ) ) ) | |
| 31 | 30 | adantr | ⊢ ( ( 𝐹 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐺 ∈ ( fBas ‘ 𝑋 ) ) → ( 𝑡 ∈ ( 𝑋 filGen 𝐹 ) ↔ ( 𝑡 ⊆ 𝑋 ∧ ∃ 𝑢 ∈ 𝐹 𝑢 ⊆ 𝑡 ) ) ) |
| 32 | 31 | adantr | ⊢ ( ( ( 𝐹 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐺 ∈ ( fBas ‘ 𝑋 ) ) ∧ ∀ 𝑥 ∈ 𝐹 ∃ 𝑦 ∈ 𝐺 𝑦 ⊆ 𝑥 ) → ( 𝑡 ∈ ( 𝑋 filGen 𝐹 ) ↔ ( 𝑡 ⊆ 𝑋 ∧ ∃ 𝑢 ∈ 𝐹 𝑢 ⊆ 𝑡 ) ) ) |
| 33 | elfg | ⊢ ( 𝐺 ∈ ( fBas ‘ 𝑋 ) → ( 𝑡 ∈ ( 𝑋 filGen 𝐺 ) ↔ ( 𝑡 ⊆ 𝑋 ∧ ∃ 𝑣 ∈ 𝐺 𝑣 ⊆ 𝑡 ) ) ) | |
| 34 | 33 | adantl | ⊢ ( ( 𝐹 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐺 ∈ ( fBas ‘ 𝑋 ) ) → ( 𝑡 ∈ ( 𝑋 filGen 𝐺 ) ↔ ( 𝑡 ⊆ 𝑋 ∧ ∃ 𝑣 ∈ 𝐺 𝑣 ⊆ 𝑡 ) ) ) |
| 35 | 34 | adantr | ⊢ ( ( ( 𝐹 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐺 ∈ ( fBas ‘ 𝑋 ) ) ∧ ∀ 𝑥 ∈ 𝐹 ∃ 𝑦 ∈ 𝐺 𝑦 ⊆ 𝑥 ) → ( 𝑡 ∈ ( 𝑋 filGen 𝐺 ) ↔ ( 𝑡 ⊆ 𝑋 ∧ ∃ 𝑣 ∈ 𝐺 𝑣 ⊆ 𝑡 ) ) ) |
| 36 | 29 32 35 | 3imtr4d | ⊢ ( ( ( 𝐹 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐺 ∈ ( fBas ‘ 𝑋 ) ) ∧ ∀ 𝑥 ∈ 𝐹 ∃ 𝑦 ∈ 𝐺 𝑦 ⊆ 𝑥 ) → ( 𝑡 ∈ ( 𝑋 filGen 𝐹 ) → 𝑡 ∈ ( 𝑋 filGen 𝐺 ) ) ) |
| 37 | 36 | ssrdv | ⊢ ( ( ( 𝐹 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐺 ∈ ( fBas ‘ 𝑋 ) ) ∧ ∀ 𝑥 ∈ 𝐹 ∃ 𝑦 ∈ 𝐺 𝑦 ⊆ 𝑥 ) → ( 𝑋 filGen 𝐹 ) ⊆ ( 𝑋 filGen 𝐺 ) ) |
| 38 | 37 | ex | ⊢ ( ( 𝐹 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐺 ∈ ( fBas ‘ 𝑋 ) ) → ( ∀ 𝑥 ∈ 𝐹 ∃ 𝑦 ∈ 𝐺 𝑦 ⊆ 𝑥 → ( 𝑋 filGen 𝐹 ) ⊆ ( 𝑋 filGen 𝐺 ) ) ) |
| 39 | 12 38 | impbid | ⊢ ( ( 𝐹 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐺 ∈ ( fBas ‘ 𝑋 ) ) → ( ( 𝑋 filGen 𝐹 ) ⊆ ( 𝑋 filGen 𝐺 ) ↔ ∀ 𝑥 ∈ 𝐹 ∃ 𝑦 ∈ 𝐺 𝑦 ⊆ 𝑥 ) ) |