This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two ways of saying that a function with known codomain is finitely supported. (Contributed by AV, 8-Jul-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ffsuppbi | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) → ( 𝐹 : 𝐼 ⟶ 𝑆 → ( 𝐹 finSupp 𝑍 ↔ ( ◡ 𝐹 “ ( 𝑆 ∖ { 𝑍 } ) ) ∈ Fin ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ffun | ⊢ ( 𝐹 : 𝐼 ⟶ 𝑆 → Fun 𝐹 ) | |
| 2 | 1 | adantl | ⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) ∧ 𝐹 : 𝐼 ⟶ 𝑆 ) → Fun 𝐹 ) |
| 3 | fex | ⊢ ( ( 𝐹 : 𝐼 ⟶ 𝑆 ∧ 𝐼 ∈ 𝑉 ) → 𝐹 ∈ V ) | |
| 4 | 3 | expcom | ⊢ ( 𝐼 ∈ 𝑉 → ( 𝐹 : 𝐼 ⟶ 𝑆 → 𝐹 ∈ V ) ) |
| 5 | 4 | adantr | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) → ( 𝐹 : 𝐼 ⟶ 𝑆 → 𝐹 ∈ V ) ) |
| 6 | 5 | imp | ⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) ∧ 𝐹 : 𝐼 ⟶ 𝑆 ) → 𝐹 ∈ V ) |
| 7 | simplr | ⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) ∧ 𝐹 : 𝐼 ⟶ 𝑆 ) → 𝑍 ∈ 𝑊 ) | |
| 8 | funisfsupp | ⊢ ( ( Fun 𝐹 ∧ 𝐹 ∈ V ∧ 𝑍 ∈ 𝑊 ) → ( 𝐹 finSupp 𝑍 ↔ ( 𝐹 supp 𝑍 ) ∈ Fin ) ) | |
| 9 | 2 6 7 8 | syl3anc | ⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) ∧ 𝐹 : 𝐼 ⟶ 𝑆 ) → ( 𝐹 finSupp 𝑍 ↔ ( 𝐹 supp 𝑍 ) ∈ Fin ) ) |
| 10 | fsuppeq | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) → ( 𝐹 : 𝐼 ⟶ 𝑆 → ( 𝐹 supp 𝑍 ) = ( ◡ 𝐹 “ ( 𝑆 ∖ { 𝑍 } ) ) ) ) | |
| 11 | 10 | imp | ⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) ∧ 𝐹 : 𝐼 ⟶ 𝑆 ) → ( 𝐹 supp 𝑍 ) = ( ◡ 𝐹 “ ( 𝑆 ∖ { 𝑍 } ) ) ) |
| 12 | 11 | eleq1d | ⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) ∧ 𝐹 : 𝐼 ⟶ 𝑆 ) → ( ( 𝐹 supp 𝑍 ) ∈ Fin ↔ ( ◡ 𝐹 “ ( 𝑆 ∖ { 𝑍 } ) ) ∈ Fin ) ) |
| 13 | 9 12 | bitrd | ⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) ∧ 𝐹 : 𝐼 ⟶ 𝑆 ) → ( 𝐹 finSupp 𝑍 ↔ ( ◡ 𝐹 “ ( 𝑆 ∖ { 𝑍 } ) ) ∈ Fin ) ) |
| 14 | 13 | ex | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) → ( 𝐹 : 𝐼 ⟶ 𝑆 → ( 𝐹 finSupp 𝑍 ↔ ( ◡ 𝐹 “ ( 𝑆 ∖ { 𝑍 } ) ) ∈ Fin ) ) ) |