This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two ways of writing the support of a function with known codomain. (Contributed by Stefan O'Rear, 9-Jul-2015) (Revised by AV, 7-Jul-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fsuppeq | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) → ( 𝐹 : 𝐼 ⟶ 𝑆 → ( 𝐹 supp 𝑍 ) = ( ◡ 𝐹 “ ( 𝑆 ∖ { 𝑍 } ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fex | ⊢ ( ( 𝐹 : 𝐼 ⟶ 𝑆 ∧ 𝐼 ∈ 𝑉 ) → 𝐹 ∈ V ) | |
| 2 | 1 | expcom | ⊢ ( 𝐼 ∈ 𝑉 → ( 𝐹 : 𝐼 ⟶ 𝑆 → 𝐹 ∈ V ) ) |
| 3 | 2 | adantr | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) → ( 𝐹 : 𝐼 ⟶ 𝑆 → 𝐹 ∈ V ) ) |
| 4 | 3 | imp | ⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) ∧ 𝐹 : 𝐼 ⟶ 𝑆 ) → 𝐹 ∈ V ) |
| 5 | simplr | ⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) ∧ 𝐹 : 𝐼 ⟶ 𝑆 ) → 𝑍 ∈ 𝑊 ) | |
| 6 | suppimacnv | ⊢ ( ( 𝐹 ∈ V ∧ 𝑍 ∈ 𝑊 ) → ( 𝐹 supp 𝑍 ) = ( ◡ 𝐹 “ ( V ∖ { 𝑍 } ) ) ) | |
| 7 | 4 5 6 | syl2anc | ⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) ∧ 𝐹 : 𝐼 ⟶ 𝑆 ) → ( 𝐹 supp 𝑍 ) = ( ◡ 𝐹 “ ( V ∖ { 𝑍 } ) ) ) |
| 8 | ffun | ⊢ ( 𝐹 : 𝐼 ⟶ 𝑆 → Fun 𝐹 ) | |
| 9 | inpreima | ⊢ ( Fun 𝐹 → ( ◡ 𝐹 “ ( 𝑆 ∩ ( V ∖ { 𝑍 } ) ) ) = ( ( ◡ 𝐹 “ 𝑆 ) ∩ ( ◡ 𝐹 “ ( V ∖ { 𝑍 } ) ) ) ) | |
| 10 | 8 9 | syl | ⊢ ( 𝐹 : 𝐼 ⟶ 𝑆 → ( ◡ 𝐹 “ ( 𝑆 ∩ ( V ∖ { 𝑍 } ) ) ) = ( ( ◡ 𝐹 “ 𝑆 ) ∩ ( ◡ 𝐹 “ ( V ∖ { 𝑍 } ) ) ) ) |
| 11 | cnvimass | ⊢ ( ◡ 𝐹 “ ( V ∖ { 𝑍 } ) ) ⊆ dom 𝐹 | |
| 12 | fdm | ⊢ ( 𝐹 : 𝐼 ⟶ 𝑆 → dom 𝐹 = 𝐼 ) | |
| 13 | fimacnv | ⊢ ( 𝐹 : 𝐼 ⟶ 𝑆 → ( ◡ 𝐹 “ 𝑆 ) = 𝐼 ) | |
| 14 | 12 13 | eqtr4d | ⊢ ( 𝐹 : 𝐼 ⟶ 𝑆 → dom 𝐹 = ( ◡ 𝐹 “ 𝑆 ) ) |
| 15 | 11 14 | sseqtrid | ⊢ ( 𝐹 : 𝐼 ⟶ 𝑆 → ( ◡ 𝐹 “ ( V ∖ { 𝑍 } ) ) ⊆ ( ◡ 𝐹 “ 𝑆 ) ) |
| 16 | sseqin2 | ⊢ ( ( ◡ 𝐹 “ ( V ∖ { 𝑍 } ) ) ⊆ ( ◡ 𝐹 “ 𝑆 ) ↔ ( ( ◡ 𝐹 “ 𝑆 ) ∩ ( ◡ 𝐹 “ ( V ∖ { 𝑍 } ) ) ) = ( ◡ 𝐹 “ ( V ∖ { 𝑍 } ) ) ) | |
| 17 | 15 16 | sylib | ⊢ ( 𝐹 : 𝐼 ⟶ 𝑆 → ( ( ◡ 𝐹 “ 𝑆 ) ∩ ( ◡ 𝐹 “ ( V ∖ { 𝑍 } ) ) ) = ( ◡ 𝐹 “ ( V ∖ { 𝑍 } ) ) ) |
| 18 | 10 17 | eqtrd | ⊢ ( 𝐹 : 𝐼 ⟶ 𝑆 → ( ◡ 𝐹 “ ( 𝑆 ∩ ( V ∖ { 𝑍 } ) ) ) = ( ◡ 𝐹 “ ( V ∖ { 𝑍 } ) ) ) |
| 19 | invdif | ⊢ ( 𝑆 ∩ ( V ∖ { 𝑍 } ) ) = ( 𝑆 ∖ { 𝑍 } ) | |
| 20 | 19 | imaeq2i | ⊢ ( ◡ 𝐹 “ ( 𝑆 ∩ ( V ∖ { 𝑍 } ) ) ) = ( ◡ 𝐹 “ ( 𝑆 ∖ { 𝑍 } ) ) |
| 21 | 18 20 | eqtr3di | ⊢ ( 𝐹 : 𝐼 ⟶ 𝑆 → ( ◡ 𝐹 “ ( V ∖ { 𝑍 } ) ) = ( ◡ 𝐹 “ ( 𝑆 ∖ { 𝑍 } ) ) ) |
| 22 | 21 | adantl | ⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) ∧ 𝐹 : 𝐼 ⟶ 𝑆 ) → ( ◡ 𝐹 “ ( V ∖ { 𝑍 } ) ) = ( ◡ 𝐹 “ ( 𝑆 ∖ { 𝑍 } ) ) ) |
| 23 | 7 22 | eqtrd | ⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) ∧ 𝐹 : 𝐼 ⟶ 𝑆 ) → ( 𝐹 supp 𝑍 ) = ( ◡ 𝐹 “ ( 𝑆 ∖ { 𝑍 } ) ) ) |
| 24 | 23 | ex | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) → ( 𝐹 : 𝐼 ⟶ 𝑆 → ( 𝐹 supp 𝑍 ) = ( ◡ 𝐹 “ ( 𝑆 ∖ { 𝑍 } ) ) ) ) |