This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two ways of saying that a function with known codomain is finitely supported. (Contributed by AV, 8-Jul-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ffsuppbi | |- ( ( I e. V /\ Z e. W ) -> ( F : I --> S -> ( F finSupp Z <-> ( `' F " ( S \ { Z } ) ) e. Fin ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ffun | |- ( F : I --> S -> Fun F ) |
|
| 2 | 1 | adantl | |- ( ( ( I e. V /\ Z e. W ) /\ F : I --> S ) -> Fun F ) |
| 3 | fex | |- ( ( F : I --> S /\ I e. V ) -> F e. _V ) |
|
| 4 | 3 | expcom | |- ( I e. V -> ( F : I --> S -> F e. _V ) ) |
| 5 | 4 | adantr | |- ( ( I e. V /\ Z e. W ) -> ( F : I --> S -> F e. _V ) ) |
| 6 | 5 | imp | |- ( ( ( I e. V /\ Z e. W ) /\ F : I --> S ) -> F e. _V ) |
| 7 | simplr | |- ( ( ( I e. V /\ Z e. W ) /\ F : I --> S ) -> Z e. W ) |
|
| 8 | funisfsupp | |- ( ( Fun F /\ F e. _V /\ Z e. W ) -> ( F finSupp Z <-> ( F supp Z ) e. Fin ) ) |
|
| 9 | 2 6 7 8 | syl3anc | |- ( ( ( I e. V /\ Z e. W ) /\ F : I --> S ) -> ( F finSupp Z <-> ( F supp Z ) e. Fin ) ) |
| 10 | fsuppeq | |- ( ( I e. V /\ Z e. W ) -> ( F : I --> S -> ( F supp Z ) = ( `' F " ( S \ { Z } ) ) ) ) |
|
| 11 | 10 | imp | |- ( ( ( I e. V /\ Z e. W ) /\ F : I --> S ) -> ( F supp Z ) = ( `' F " ( S \ { Z } ) ) ) |
| 12 | 11 | eleq1d | |- ( ( ( I e. V /\ Z e. W ) /\ F : I --> S ) -> ( ( F supp Z ) e. Fin <-> ( `' F " ( S \ { Z } ) ) e. Fin ) ) |
| 13 | 9 12 | bitrd | |- ( ( ( I e. V /\ Z e. W ) /\ F : I --> S ) -> ( F finSupp Z <-> ( `' F " ( S \ { Z } ) ) e. Fin ) ) |
| 14 | 13 | ex | |- ( ( I e. V /\ Z e. W ) -> ( F : I --> S -> ( F finSupp Z <-> ( `' F " ( S \ { Z } ) ) e. Fin ) ) ) |