This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define a function that gives the cluster points of a function. (Contributed by Jeff Hankins, 24-Nov-2009)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-fcf | ⊢ fClusf = ( 𝑗 ∈ Top , 𝑓 ∈ ∪ ran Fil ↦ ( 𝑔 ∈ ( ∪ 𝑗 ↑m ∪ 𝑓 ) ↦ ( 𝑗 fClus ( ( ∪ 𝑗 FilMap 𝑔 ) ‘ 𝑓 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cfcf | ⊢ fClusf | |
| 1 | vj | ⊢ 𝑗 | |
| 2 | ctop | ⊢ Top | |
| 3 | vf | ⊢ 𝑓 | |
| 4 | cfil | ⊢ Fil | |
| 5 | 4 | crn | ⊢ ran Fil |
| 6 | 5 | cuni | ⊢ ∪ ran Fil |
| 7 | vg | ⊢ 𝑔 | |
| 8 | 1 | cv | ⊢ 𝑗 |
| 9 | 8 | cuni | ⊢ ∪ 𝑗 |
| 10 | cmap | ⊢ ↑m | |
| 11 | 3 | cv | ⊢ 𝑓 |
| 12 | 11 | cuni | ⊢ ∪ 𝑓 |
| 13 | 9 12 10 | co | ⊢ ( ∪ 𝑗 ↑m ∪ 𝑓 ) |
| 14 | cfcls | ⊢ fClus | |
| 15 | cfm | ⊢ FilMap | |
| 16 | 7 | cv | ⊢ 𝑔 |
| 17 | 9 16 15 | co | ⊢ ( ∪ 𝑗 FilMap 𝑔 ) |
| 18 | 11 17 | cfv | ⊢ ( ( ∪ 𝑗 FilMap 𝑔 ) ‘ 𝑓 ) |
| 19 | 8 18 14 | co | ⊢ ( 𝑗 fClus ( ( ∪ 𝑗 FilMap 𝑔 ) ‘ 𝑓 ) ) |
| 20 | 7 13 19 | cmpt | ⊢ ( 𝑔 ∈ ( ∪ 𝑗 ↑m ∪ 𝑓 ) ↦ ( 𝑗 fClus ( ( ∪ 𝑗 FilMap 𝑔 ) ‘ 𝑓 ) ) ) |
| 21 | 1 3 2 6 20 | cmpo | ⊢ ( 𝑗 ∈ Top , 𝑓 ∈ ∪ ran Fil ↦ ( 𝑔 ∈ ( ∪ 𝑗 ↑m ∪ 𝑓 ) ↦ ( 𝑗 fClus ( ( ∪ 𝑗 FilMap 𝑔 ) ‘ 𝑓 ) ) ) ) |
| 22 | 0 21 | wceq | ⊢ fClusf = ( 𝑗 ∈ Top , 𝑓 ∈ ∪ ran Fil ↦ ( 𝑔 ∈ ( ∪ 𝑗 ↑m ∪ 𝑓 ) ↦ ( 𝑗 fClus ( ( ∪ 𝑗 FilMap 𝑔 ) ‘ 𝑓 ) ) ) ) |