This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Version of fcdmnn0fsupp avoiding ax-rep by assuming F is a set rather than its domain I . (Contributed by SN, 5-Aug-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fcdmnn0fsuppg | ⊢ ( ( 𝐹 ∈ 𝑉 ∧ 𝐹 : 𝐼 ⟶ ℕ0 ) → ( 𝐹 finSupp 0 ↔ ( ◡ 𝐹 “ ℕ ) ∈ Fin ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ffun | ⊢ ( 𝐹 : 𝐼 ⟶ ℕ0 → Fun 𝐹 ) | |
| 2 | simpl | ⊢ ( ( 𝐹 ∈ 𝑉 ∧ 𝐹 : 𝐼 ⟶ ℕ0 ) → 𝐹 ∈ 𝑉 ) | |
| 3 | c0ex | ⊢ 0 ∈ V | |
| 4 | funisfsupp | ⊢ ( ( Fun 𝐹 ∧ 𝐹 ∈ 𝑉 ∧ 0 ∈ V ) → ( 𝐹 finSupp 0 ↔ ( 𝐹 supp 0 ) ∈ Fin ) ) | |
| 5 | 3 4 | mp3an3 | ⊢ ( ( Fun 𝐹 ∧ 𝐹 ∈ 𝑉 ) → ( 𝐹 finSupp 0 ↔ ( 𝐹 supp 0 ) ∈ Fin ) ) |
| 6 | 1 2 5 | syl2an2 | ⊢ ( ( 𝐹 ∈ 𝑉 ∧ 𝐹 : 𝐼 ⟶ ℕ0 ) → ( 𝐹 finSupp 0 ↔ ( 𝐹 supp 0 ) ∈ Fin ) ) |
| 7 | fcdmnn0suppg | ⊢ ( ( 𝐹 ∈ 𝑉 ∧ 𝐹 : 𝐼 ⟶ ℕ0 ) → ( 𝐹 supp 0 ) = ( ◡ 𝐹 “ ℕ ) ) | |
| 8 | 7 | eleq1d | ⊢ ( ( 𝐹 ∈ 𝑉 ∧ 𝐹 : 𝐼 ⟶ ℕ0 ) → ( ( 𝐹 supp 0 ) ∈ Fin ↔ ( ◡ 𝐹 “ ℕ ) ∈ Fin ) ) |
| 9 | 6 8 | bitrd | ⊢ ( ( 𝐹 ∈ 𝑉 ∧ 𝐹 : 𝐼 ⟶ ℕ0 ) → ( 𝐹 finSupp 0 ↔ ( ◡ 𝐹 “ ℕ ) ∈ Fin ) ) |