This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Version of fcdmnn0fsupp avoiding ax-rep by assuming F is a set rather than its domain I . (Contributed by SN, 5-Aug-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fcdmnn0fsuppg | |- ( ( F e. V /\ F : I --> NN0 ) -> ( F finSupp 0 <-> ( `' F " NN ) e. Fin ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ffun | |- ( F : I --> NN0 -> Fun F ) |
|
| 2 | simpl | |- ( ( F e. V /\ F : I --> NN0 ) -> F e. V ) |
|
| 3 | c0ex | |- 0 e. _V |
|
| 4 | funisfsupp | |- ( ( Fun F /\ F e. V /\ 0 e. _V ) -> ( F finSupp 0 <-> ( F supp 0 ) e. Fin ) ) |
|
| 5 | 3 4 | mp3an3 | |- ( ( Fun F /\ F e. V ) -> ( F finSupp 0 <-> ( F supp 0 ) e. Fin ) ) |
| 6 | 1 2 5 | syl2an2 | |- ( ( F e. V /\ F : I --> NN0 ) -> ( F finSupp 0 <-> ( F supp 0 ) e. Fin ) ) |
| 7 | fcdmnn0suppg | |- ( ( F e. V /\ F : I --> NN0 ) -> ( F supp 0 ) = ( `' F " NN ) ) |
|
| 8 | 7 | eleq1d | |- ( ( F e. V /\ F : I --> NN0 ) -> ( ( F supp 0 ) e. Fin <-> ( `' F " NN ) e. Fin ) ) |
| 9 | 6 8 | bitrd | |- ( ( F e. V /\ F : I --> NN0 ) -> ( F finSupp 0 <-> ( `' F " NN ) e. Fin ) ) |