This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A false statement can only be true for elements of an empty set. (Contributed by AV, 30-Oct-2020) (Proof shortened by TM, 16-Feb-2026)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | falseral0 | ⊢ ( ( ∀ 𝑥 ¬ 𝜑 ∧ ∀ 𝑥 ∈ 𝐴 𝜑 ) → 𝐴 = ∅ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | alral | ⊢ ( ∀ 𝑥 ¬ 𝜑 → ∀ 𝑥 ∈ 𝐴 ¬ 𝜑 ) | |
| 2 | pm2.21 | ⊢ ( ¬ 𝜑 → ( 𝜑 → ⊥ ) ) | |
| 3 | 2 | ral2imi | ⊢ ( ∀ 𝑥 ∈ 𝐴 ¬ 𝜑 → ( ∀ 𝑥 ∈ 𝐴 𝜑 → ∀ 𝑥 ∈ 𝐴 ⊥ ) ) |
| 4 | 3 | imp | ⊢ ( ( ∀ 𝑥 ∈ 𝐴 ¬ 𝜑 ∧ ∀ 𝑥 ∈ 𝐴 𝜑 ) → ∀ 𝑥 ∈ 𝐴 ⊥ ) |
| 5 | 1 4 | sylan | ⊢ ( ( ∀ 𝑥 ¬ 𝜑 ∧ ∀ 𝑥 ∈ 𝐴 𝜑 ) → ∀ 𝑥 ∈ 𝐴 ⊥ ) |
| 6 | fal | ⊢ ¬ ⊥ | |
| 7 | 6 | ralf0 | ⊢ ( ∀ 𝑥 ∈ 𝐴 ⊥ ↔ 𝐴 = ∅ ) |
| 8 | 5 7 | sylib | ⊢ ( ( ∀ 𝑥 ¬ 𝜑 ∧ ∀ 𝑥 ∈ 𝐴 𝜑 ) → 𝐴 = ∅ ) |