This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.

Metamath Proof Explorer


Theorem falseral0

Description: A false statement can only be true for elements of an empty set. (Contributed by AV, 30-Oct-2020) (Proof shortened by TM, 16-Feb-2026)

Ref Expression
Assertion falseral0 ( ( ∀ 𝑥 ¬ 𝜑 ∧ ∀ 𝑥𝐴 𝜑 ) → 𝐴 = ∅ )

Proof

Step Hyp Ref Expression
1 alral ( ∀ 𝑥 ¬ 𝜑 → ∀ 𝑥𝐴 ¬ 𝜑 )
2 pm2.21 ( ¬ 𝜑 → ( 𝜑 → ⊥ ) )
3 2 ral2imi ( ∀ 𝑥𝐴 ¬ 𝜑 → ( ∀ 𝑥𝐴 𝜑 → ∀ 𝑥𝐴 ⊥ ) )
4 3 imp ( ( ∀ 𝑥𝐴 ¬ 𝜑 ∧ ∀ 𝑥𝐴 𝜑 ) → ∀ 𝑥𝐴 ⊥ )
5 1 4 sylan ( ( ∀ 𝑥 ¬ 𝜑 ∧ ∀ 𝑥𝐴 𝜑 ) → ∀ 𝑥𝐴 ⊥ )
6 fal ¬ ⊥
7 6 ralf0 ( ∀ 𝑥𝐴 ⊥ ↔ 𝐴 = ∅ )
8 5 7 sylib ( ( ∀ 𝑥 ¬ 𝜑 ∧ ∀ 𝑥𝐴 𝜑 ) → 𝐴 = ∅ )