This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.

Metamath Proof Explorer


Theorem falseral0

Description: A false statement can only be true for elements of an empty set. (Contributed by AV, 30-Oct-2020) (Proof shortened by TM, 16-Feb-2026)

Ref Expression
Assertion falseral0 x ¬ φ x A φ A =

Proof

Step Hyp Ref Expression
1 alral x ¬ φ x A ¬ φ
2 pm2.21 ¬ φ φ
3 2 ral2imi x A ¬ φ x A φ x A
4 3 imp x A ¬ φ x A φ x A
5 1 4 sylan x ¬ φ x A φ x A
6 fal ¬
7 6 ralf0 x A A =
8 5 7 sylib x ¬ φ x A φ A =