This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A false statement can only be true for elements of an empty set. (Contributed by AV, 30-Oct-2020) (Proof shortened by TM, 16-Feb-2026)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | falseral0 | |- ( ( A. x -. ph /\ A. x e. A ph ) -> A = (/) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | alral | |- ( A. x -. ph -> A. x e. A -. ph ) |
|
| 2 | pm2.21 | |- ( -. ph -> ( ph -> F. ) ) |
|
| 3 | 2 | ral2imi | |- ( A. x e. A -. ph -> ( A. x e. A ph -> A. x e. A F. ) ) |
| 4 | 3 | imp | |- ( ( A. x e. A -. ph /\ A. x e. A ph ) -> A. x e. A F. ) |
| 5 | 1 4 | sylan | |- ( ( A. x -. ph /\ A. x e. A ph ) -> A. x e. A F. ) |
| 6 | fal | |- -. F. |
|
| 7 | 6 | ralf0 | |- ( A. x e. A F. <-> A = (/) ) |
| 8 | 5 7 | sylib | |- ( ( A. x -. ph /\ A. x e. A ph ) -> A = (/) ) |