This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The quantification of a falsehood is vacuous when true. (Contributed by NM, 26-Nov-2005) (Proof shortened by JJ, 14-Jul-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | ralf0.1 | ⊢ ¬ 𝜑 | |
| Assertion | ralf0 | ⊢ ( ∀ 𝑥 ∈ 𝐴 𝜑 ↔ 𝐴 = ∅ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ralf0.1 | ⊢ ¬ 𝜑 | |
| 2 | mtt | ⊢ ( ¬ 𝜑 → ( ¬ 𝑥 ∈ 𝐴 ↔ ( 𝑥 ∈ 𝐴 → 𝜑 ) ) ) | |
| 3 | 1 2 | ax-mp | ⊢ ( ¬ 𝑥 ∈ 𝐴 ↔ ( 𝑥 ∈ 𝐴 → 𝜑 ) ) |
| 4 | 3 | albii | ⊢ ( ∀ 𝑥 ¬ 𝑥 ∈ 𝐴 ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 → 𝜑 ) ) |
| 5 | eq0 | ⊢ ( 𝐴 = ∅ ↔ ∀ 𝑥 ¬ 𝑥 ∈ 𝐴 ) | |
| 6 | df-ral | ⊢ ( ∀ 𝑥 ∈ 𝐴 𝜑 ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 → 𝜑 ) ) | |
| 7 | 4 5 6 | 3bitr4ri | ⊢ ( ∀ 𝑥 ∈ 𝐴 𝜑 ↔ 𝐴 = ∅ ) |