This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Obsolete version of falseral0 as of 16-Feb-2026. (Contributed by AV, 30-Oct-2020) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | falseral0OLD | ⊢ ( ( ∀ 𝑥 ¬ 𝜑 ∧ ∀ 𝑥 ∈ 𝐴 𝜑 ) → 𝐴 = ∅ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ral | ⊢ ( ∀ 𝑥 ∈ 𝐴 𝜑 ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 → 𝜑 ) ) | |
| 2 | 19.26 | ⊢ ( ∀ 𝑥 ( ¬ 𝜑 ∧ ( 𝑥 ∈ 𝐴 → 𝜑 ) ) ↔ ( ∀ 𝑥 ¬ 𝜑 ∧ ∀ 𝑥 ( 𝑥 ∈ 𝐴 → 𝜑 ) ) ) | |
| 3 | con3 | ⊢ ( ( 𝑥 ∈ 𝐴 → 𝜑 ) → ( ¬ 𝜑 → ¬ 𝑥 ∈ 𝐴 ) ) | |
| 4 | 3 | impcom | ⊢ ( ( ¬ 𝜑 ∧ ( 𝑥 ∈ 𝐴 → 𝜑 ) ) → ¬ 𝑥 ∈ 𝐴 ) |
| 5 | 4 | alimi | ⊢ ( ∀ 𝑥 ( ¬ 𝜑 ∧ ( 𝑥 ∈ 𝐴 → 𝜑 ) ) → ∀ 𝑥 ¬ 𝑥 ∈ 𝐴 ) |
| 6 | alnex | ⊢ ( ∀ 𝑥 ¬ 𝑥 ∈ 𝐴 ↔ ¬ ∃ 𝑥 𝑥 ∈ 𝐴 ) | |
| 7 | 5 6 | sylib | ⊢ ( ∀ 𝑥 ( ¬ 𝜑 ∧ ( 𝑥 ∈ 𝐴 → 𝜑 ) ) → ¬ ∃ 𝑥 𝑥 ∈ 𝐴 ) |
| 8 | notnotb | ⊢ ( 𝐴 = ∅ ↔ ¬ ¬ 𝐴 = ∅ ) | |
| 9 | neq0 | ⊢ ( ¬ 𝐴 = ∅ ↔ ∃ 𝑥 𝑥 ∈ 𝐴 ) | |
| 10 | 8 9 | xchbinx | ⊢ ( 𝐴 = ∅ ↔ ¬ ∃ 𝑥 𝑥 ∈ 𝐴 ) |
| 11 | 7 10 | sylibr | ⊢ ( ∀ 𝑥 ( ¬ 𝜑 ∧ ( 𝑥 ∈ 𝐴 → 𝜑 ) ) → 𝐴 = ∅ ) |
| 12 | 2 11 | sylbir | ⊢ ( ( ∀ 𝑥 ¬ 𝜑 ∧ ∀ 𝑥 ( 𝑥 ∈ 𝐴 → 𝜑 ) ) → 𝐴 = ∅ ) |
| 13 | 1 12 | sylan2b | ⊢ ( ( ∀ 𝑥 ¬ 𝜑 ∧ ∀ 𝑥 ∈ 𝐴 𝜑 ) → 𝐴 = ∅ ) |