This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An upper bound for the factorial function. (Contributed by Mario Carneiro, 15-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | facubnd | ⊢ ( 𝑁 ∈ ℕ0 → ( ! ‘ 𝑁 ) ≤ ( 𝑁 ↑ 𝑁 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 | ⊢ ( 𝑚 = 0 → ( ! ‘ 𝑚 ) = ( ! ‘ 0 ) ) | |
| 2 | fac0 | ⊢ ( ! ‘ 0 ) = 1 | |
| 3 | 1 2 | eqtrdi | ⊢ ( 𝑚 = 0 → ( ! ‘ 𝑚 ) = 1 ) |
| 4 | id | ⊢ ( 𝑚 = 0 → 𝑚 = 0 ) | |
| 5 | 4 4 | oveq12d | ⊢ ( 𝑚 = 0 → ( 𝑚 ↑ 𝑚 ) = ( 0 ↑ 0 ) ) |
| 6 | 0exp0e1 | ⊢ ( 0 ↑ 0 ) = 1 | |
| 7 | 5 6 | eqtrdi | ⊢ ( 𝑚 = 0 → ( 𝑚 ↑ 𝑚 ) = 1 ) |
| 8 | 3 7 | breq12d | ⊢ ( 𝑚 = 0 → ( ( ! ‘ 𝑚 ) ≤ ( 𝑚 ↑ 𝑚 ) ↔ 1 ≤ 1 ) ) |
| 9 | fveq2 | ⊢ ( 𝑚 = 𝑘 → ( ! ‘ 𝑚 ) = ( ! ‘ 𝑘 ) ) | |
| 10 | id | ⊢ ( 𝑚 = 𝑘 → 𝑚 = 𝑘 ) | |
| 11 | 10 10 | oveq12d | ⊢ ( 𝑚 = 𝑘 → ( 𝑚 ↑ 𝑚 ) = ( 𝑘 ↑ 𝑘 ) ) |
| 12 | 9 11 | breq12d | ⊢ ( 𝑚 = 𝑘 → ( ( ! ‘ 𝑚 ) ≤ ( 𝑚 ↑ 𝑚 ) ↔ ( ! ‘ 𝑘 ) ≤ ( 𝑘 ↑ 𝑘 ) ) ) |
| 13 | fveq2 | ⊢ ( 𝑚 = ( 𝑘 + 1 ) → ( ! ‘ 𝑚 ) = ( ! ‘ ( 𝑘 + 1 ) ) ) | |
| 14 | id | ⊢ ( 𝑚 = ( 𝑘 + 1 ) → 𝑚 = ( 𝑘 + 1 ) ) | |
| 15 | 14 14 | oveq12d | ⊢ ( 𝑚 = ( 𝑘 + 1 ) → ( 𝑚 ↑ 𝑚 ) = ( ( 𝑘 + 1 ) ↑ ( 𝑘 + 1 ) ) ) |
| 16 | 13 15 | breq12d | ⊢ ( 𝑚 = ( 𝑘 + 1 ) → ( ( ! ‘ 𝑚 ) ≤ ( 𝑚 ↑ 𝑚 ) ↔ ( ! ‘ ( 𝑘 + 1 ) ) ≤ ( ( 𝑘 + 1 ) ↑ ( 𝑘 + 1 ) ) ) ) |
| 17 | fveq2 | ⊢ ( 𝑚 = 𝑁 → ( ! ‘ 𝑚 ) = ( ! ‘ 𝑁 ) ) | |
| 18 | id | ⊢ ( 𝑚 = 𝑁 → 𝑚 = 𝑁 ) | |
| 19 | 18 18 | oveq12d | ⊢ ( 𝑚 = 𝑁 → ( 𝑚 ↑ 𝑚 ) = ( 𝑁 ↑ 𝑁 ) ) |
| 20 | 17 19 | breq12d | ⊢ ( 𝑚 = 𝑁 → ( ( ! ‘ 𝑚 ) ≤ ( 𝑚 ↑ 𝑚 ) ↔ ( ! ‘ 𝑁 ) ≤ ( 𝑁 ↑ 𝑁 ) ) ) |
| 21 | 1le1 | ⊢ 1 ≤ 1 | |
| 22 | faccl | ⊢ ( 𝑘 ∈ ℕ0 → ( ! ‘ 𝑘 ) ∈ ℕ ) | |
| 23 | 22 | adantr | ⊢ ( ( 𝑘 ∈ ℕ0 ∧ ( ! ‘ 𝑘 ) ≤ ( 𝑘 ↑ 𝑘 ) ) → ( ! ‘ 𝑘 ) ∈ ℕ ) |
| 24 | 23 | nnred | ⊢ ( ( 𝑘 ∈ ℕ0 ∧ ( ! ‘ 𝑘 ) ≤ ( 𝑘 ↑ 𝑘 ) ) → ( ! ‘ 𝑘 ) ∈ ℝ ) |
| 25 | nn0re | ⊢ ( 𝑘 ∈ ℕ0 → 𝑘 ∈ ℝ ) | |
| 26 | 25 | adantr | ⊢ ( ( 𝑘 ∈ ℕ0 ∧ ( ! ‘ 𝑘 ) ≤ ( 𝑘 ↑ 𝑘 ) ) → 𝑘 ∈ ℝ ) |
| 27 | simpl | ⊢ ( ( 𝑘 ∈ ℕ0 ∧ ( ! ‘ 𝑘 ) ≤ ( 𝑘 ↑ 𝑘 ) ) → 𝑘 ∈ ℕ0 ) | |
| 28 | 26 27 | reexpcld | ⊢ ( ( 𝑘 ∈ ℕ0 ∧ ( ! ‘ 𝑘 ) ≤ ( 𝑘 ↑ 𝑘 ) ) → ( 𝑘 ↑ 𝑘 ) ∈ ℝ ) |
| 29 | nn0p1nn | ⊢ ( 𝑘 ∈ ℕ0 → ( 𝑘 + 1 ) ∈ ℕ ) | |
| 30 | 29 | adantr | ⊢ ( ( 𝑘 ∈ ℕ0 ∧ ( ! ‘ 𝑘 ) ≤ ( 𝑘 ↑ 𝑘 ) ) → ( 𝑘 + 1 ) ∈ ℕ ) |
| 31 | 30 | nnred | ⊢ ( ( 𝑘 ∈ ℕ0 ∧ ( ! ‘ 𝑘 ) ≤ ( 𝑘 ↑ 𝑘 ) ) → ( 𝑘 + 1 ) ∈ ℝ ) |
| 32 | 31 27 | reexpcld | ⊢ ( ( 𝑘 ∈ ℕ0 ∧ ( ! ‘ 𝑘 ) ≤ ( 𝑘 ↑ 𝑘 ) ) → ( ( 𝑘 + 1 ) ↑ 𝑘 ) ∈ ℝ ) |
| 33 | simpr | ⊢ ( ( 𝑘 ∈ ℕ0 ∧ ( ! ‘ 𝑘 ) ≤ ( 𝑘 ↑ 𝑘 ) ) → ( ! ‘ 𝑘 ) ≤ ( 𝑘 ↑ 𝑘 ) ) | |
| 34 | nn0ge0 | ⊢ ( 𝑘 ∈ ℕ0 → 0 ≤ 𝑘 ) | |
| 35 | 34 | adantr | ⊢ ( ( 𝑘 ∈ ℕ0 ∧ ( ! ‘ 𝑘 ) ≤ ( 𝑘 ↑ 𝑘 ) ) → 0 ≤ 𝑘 ) |
| 36 | 26 | lep1d | ⊢ ( ( 𝑘 ∈ ℕ0 ∧ ( ! ‘ 𝑘 ) ≤ ( 𝑘 ↑ 𝑘 ) ) → 𝑘 ≤ ( 𝑘 + 1 ) ) |
| 37 | leexp1a | ⊢ ( ( ( 𝑘 ∈ ℝ ∧ ( 𝑘 + 1 ) ∈ ℝ ∧ 𝑘 ∈ ℕ0 ) ∧ ( 0 ≤ 𝑘 ∧ 𝑘 ≤ ( 𝑘 + 1 ) ) ) → ( 𝑘 ↑ 𝑘 ) ≤ ( ( 𝑘 + 1 ) ↑ 𝑘 ) ) | |
| 38 | 26 31 27 35 36 37 | syl32anc | ⊢ ( ( 𝑘 ∈ ℕ0 ∧ ( ! ‘ 𝑘 ) ≤ ( 𝑘 ↑ 𝑘 ) ) → ( 𝑘 ↑ 𝑘 ) ≤ ( ( 𝑘 + 1 ) ↑ 𝑘 ) ) |
| 39 | 24 28 32 33 38 | letrd | ⊢ ( ( 𝑘 ∈ ℕ0 ∧ ( ! ‘ 𝑘 ) ≤ ( 𝑘 ↑ 𝑘 ) ) → ( ! ‘ 𝑘 ) ≤ ( ( 𝑘 + 1 ) ↑ 𝑘 ) ) |
| 40 | 30 | nngt0d | ⊢ ( ( 𝑘 ∈ ℕ0 ∧ ( ! ‘ 𝑘 ) ≤ ( 𝑘 ↑ 𝑘 ) ) → 0 < ( 𝑘 + 1 ) ) |
| 41 | lemul1 | ⊢ ( ( ( ! ‘ 𝑘 ) ∈ ℝ ∧ ( ( 𝑘 + 1 ) ↑ 𝑘 ) ∈ ℝ ∧ ( ( 𝑘 + 1 ) ∈ ℝ ∧ 0 < ( 𝑘 + 1 ) ) ) → ( ( ! ‘ 𝑘 ) ≤ ( ( 𝑘 + 1 ) ↑ 𝑘 ) ↔ ( ( ! ‘ 𝑘 ) · ( 𝑘 + 1 ) ) ≤ ( ( ( 𝑘 + 1 ) ↑ 𝑘 ) · ( 𝑘 + 1 ) ) ) ) | |
| 42 | 24 32 31 40 41 | syl112anc | ⊢ ( ( 𝑘 ∈ ℕ0 ∧ ( ! ‘ 𝑘 ) ≤ ( 𝑘 ↑ 𝑘 ) ) → ( ( ! ‘ 𝑘 ) ≤ ( ( 𝑘 + 1 ) ↑ 𝑘 ) ↔ ( ( ! ‘ 𝑘 ) · ( 𝑘 + 1 ) ) ≤ ( ( ( 𝑘 + 1 ) ↑ 𝑘 ) · ( 𝑘 + 1 ) ) ) ) |
| 43 | 39 42 | mpbid | ⊢ ( ( 𝑘 ∈ ℕ0 ∧ ( ! ‘ 𝑘 ) ≤ ( 𝑘 ↑ 𝑘 ) ) → ( ( ! ‘ 𝑘 ) · ( 𝑘 + 1 ) ) ≤ ( ( ( 𝑘 + 1 ) ↑ 𝑘 ) · ( 𝑘 + 1 ) ) ) |
| 44 | facp1 | ⊢ ( 𝑘 ∈ ℕ0 → ( ! ‘ ( 𝑘 + 1 ) ) = ( ( ! ‘ 𝑘 ) · ( 𝑘 + 1 ) ) ) | |
| 45 | 44 | adantr | ⊢ ( ( 𝑘 ∈ ℕ0 ∧ ( ! ‘ 𝑘 ) ≤ ( 𝑘 ↑ 𝑘 ) ) → ( ! ‘ ( 𝑘 + 1 ) ) = ( ( ! ‘ 𝑘 ) · ( 𝑘 + 1 ) ) ) |
| 46 | 30 | nncnd | ⊢ ( ( 𝑘 ∈ ℕ0 ∧ ( ! ‘ 𝑘 ) ≤ ( 𝑘 ↑ 𝑘 ) ) → ( 𝑘 + 1 ) ∈ ℂ ) |
| 47 | 46 27 | expp1d | ⊢ ( ( 𝑘 ∈ ℕ0 ∧ ( ! ‘ 𝑘 ) ≤ ( 𝑘 ↑ 𝑘 ) ) → ( ( 𝑘 + 1 ) ↑ ( 𝑘 + 1 ) ) = ( ( ( 𝑘 + 1 ) ↑ 𝑘 ) · ( 𝑘 + 1 ) ) ) |
| 48 | 43 45 47 | 3brtr4d | ⊢ ( ( 𝑘 ∈ ℕ0 ∧ ( ! ‘ 𝑘 ) ≤ ( 𝑘 ↑ 𝑘 ) ) → ( ! ‘ ( 𝑘 + 1 ) ) ≤ ( ( 𝑘 + 1 ) ↑ ( 𝑘 + 1 ) ) ) |
| 49 | 48 | ex | ⊢ ( 𝑘 ∈ ℕ0 → ( ( ! ‘ 𝑘 ) ≤ ( 𝑘 ↑ 𝑘 ) → ( ! ‘ ( 𝑘 + 1 ) ) ≤ ( ( 𝑘 + 1 ) ↑ ( 𝑘 + 1 ) ) ) ) |
| 50 | 8 12 16 20 21 49 | nn0ind | ⊢ ( 𝑁 ∈ ℕ0 → ( ! ‘ 𝑁 ) ≤ ( 𝑁 ↑ 𝑁 ) ) |