This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The classes involved in a binary relation of a function value which is an ordered-pair class abstraction are sets. (Contributed by AV, 7-Jan-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | brfvopab.1 | ⊢ ( 𝑋 ∈ V → ( 𝐹 ‘ 𝑋 ) = { 〈 𝑦 , 𝑧 〉 ∣ 𝜑 } ) | |
| Assertion | brfvopab | ⊢ ( 𝐴 ( 𝐹 ‘ 𝑋 ) 𝐵 → ( 𝑋 ∈ V ∧ 𝐴 ∈ V ∧ 𝐵 ∈ V ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brfvopab.1 | ⊢ ( 𝑋 ∈ V → ( 𝐹 ‘ 𝑋 ) = { 〈 𝑦 , 𝑧 〉 ∣ 𝜑 } ) | |
| 2 | 1 | breqd | ⊢ ( 𝑋 ∈ V → ( 𝐴 ( 𝐹 ‘ 𝑋 ) 𝐵 ↔ 𝐴 { 〈 𝑦 , 𝑧 〉 ∣ 𝜑 } 𝐵 ) ) |
| 3 | brabv | ⊢ ( 𝐴 { 〈 𝑦 , 𝑧 〉 ∣ 𝜑 } 𝐵 → ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) ) | |
| 4 | 2 3 | biimtrdi | ⊢ ( 𝑋 ∈ V → ( 𝐴 ( 𝐹 ‘ 𝑋 ) 𝐵 → ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) ) ) |
| 5 | 4 | imdistani | ⊢ ( ( 𝑋 ∈ V ∧ 𝐴 ( 𝐹 ‘ 𝑋 ) 𝐵 ) → ( 𝑋 ∈ V ∧ ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) ) ) |
| 6 | 3anass | ⊢ ( ( 𝑋 ∈ V ∧ 𝐴 ∈ V ∧ 𝐵 ∈ V ) ↔ ( 𝑋 ∈ V ∧ ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) ) ) | |
| 7 | 5 6 | sylibr | ⊢ ( ( 𝑋 ∈ V ∧ 𝐴 ( 𝐹 ‘ 𝑋 ) 𝐵 ) → ( 𝑋 ∈ V ∧ 𝐴 ∈ V ∧ 𝐵 ∈ V ) ) |
| 8 | 7 | ex | ⊢ ( 𝑋 ∈ V → ( 𝐴 ( 𝐹 ‘ 𝑋 ) 𝐵 → ( 𝑋 ∈ V ∧ 𝐴 ∈ V ∧ 𝐵 ∈ V ) ) ) |
| 9 | fvprc | ⊢ ( ¬ 𝑋 ∈ V → ( 𝐹 ‘ 𝑋 ) = ∅ ) | |
| 10 | breq | ⊢ ( ( 𝐹 ‘ 𝑋 ) = ∅ → ( 𝐴 ( 𝐹 ‘ 𝑋 ) 𝐵 ↔ 𝐴 ∅ 𝐵 ) ) | |
| 11 | br0 | ⊢ ¬ 𝐴 ∅ 𝐵 | |
| 12 | 11 | pm2.21i | ⊢ ( 𝐴 ∅ 𝐵 → ( 𝑋 ∈ V ∧ 𝐴 ∈ V ∧ 𝐵 ∈ V ) ) |
| 13 | 10 12 | biimtrdi | ⊢ ( ( 𝐹 ‘ 𝑋 ) = ∅ → ( 𝐴 ( 𝐹 ‘ 𝑋 ) 𝐵 → ( 𝑋 ∈ V ∧ 𝐴 ∈ V ∧ 𝐵 ∈ V ) ) ) |
| 14 | 9 13 | syl | ⊢ ( ¬ 𝑋 ∈ V → ( 𝐴 ( 𝐹 ‘ 𝑋 ) 𝐵 → ( 𝑋 ∈ V ∧ 𝐴 ∈ V ∧ 𝐵 ∈ V ) ) ) |
| 15 | 8 14 | pm2.61i | ⊢ ( 𝐴 ( 𝐹 ‘ 𝑋 ) 𝐵 → ( 𝑋 ∈ V ∧ 𝐴 ∈ V ∧ 𝐵 ∈ V ) ) |