This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Condition for an operation to be one-to-one. (Contributed by Jeff Madsen, 17-Jun-2010)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | f1opr | |- ( F : ( A X. B ) -1-1-> C <-> ( F : ( A X. B ) --> C /\ A. r e. A A. s e. B A. t e. A A. u e. B ( ( r F s ) = ( t F u ) -> ( r = t /\ s = u ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dff13 | |- ( F : ( A X. B ) -1-1-> C <-> ( F : ( A X. B ) --> C /\ A. v e. ( A X. B ) A. w e. ( A X. B ) ( ( F ` v ) = ( F ` w ) -> v = w ) ) ) |
|
| 2 | fveq2 | |- ( v = <. r , s >. -> ( F ` v ) = ( F ` <. r , s >. ) ) |
|
| 3 | df-ov | |- ( r F s ) = ( F ` <. r , s >. ) |
|
| 4 | 2 3 | eqtr4di | |- ( v = <. r , s >. -> ( F ` v ) = ( r F s ) ) |
| 5 | 4 | eqeq1d | |- ( v = <. r , s >. -> ( ( F ` v ) = ( F ` w ) <-> ( r F s ) = ( F ` w ) ) ) |
| 6 | eqeq1 | |- ( v = <. r , s >. -> ( v = w <-> <. r , s >. = w ) ) |
|
| 7 | 5 6 | imbi12d | |- ( v = <. r , s >. -> ( ( ( F ` v ) = ( F ` w ) -> v = w ) <-> ( ( r F s ) = ( F ` w ) -> <. r , s >. = w ) ) ) |
| 8 | 7 | ralbidv | |- ( v = <. r , s >. -> ( A. w e. ( A X. B ) ( ( F ` v ) = ( F ` w ) -> v = w ) <-> A. w e. ( A X. B ) ( ( r F s ) = ( F ` w ) -> <. r , s >. = w ) ) ) |
| 9 | 8 | ralxp | |- ( A. v e. ( A X. B ) A. w e. ( A X. B ) ( ( F ` v ) = ( F ` w ) -> v = w ) <-> A. r e. A A. s e. B A. w e. ( A X. B ) ( ( r F s ) = ( F ` w ) -> <. r , s >. = w ) ) |
| 10 | fveq2 | |- ( w = <. t , u >. -> ( F ` w ) = ( F ` <. t , u >. ) ) |
|
| 11 | df-ov | |- ( t F u ) = ( F ` <. t , u >. ) |
|
| 12 | 10 11 | eqtr4di | |- ( w = <. t , u >. -> ( F ` w ) = ( t F u ) ) |
| 13 | 12 | eqeq2d | |- ( w = <. t , u >. -> ( ( r F s ) = ( F ` w ) <-> ( r F s ) = ( t F u ) ) ) |
| 14 | eqeq2 | |- ( w = <. t , u >. -> ( <. r , s >. = w <-> <. r , s >. = <. t , u >. ) ) |
|
| 15 | vex | |- r e. _V |
|
| 16 | vex | |- s e. _V |
|
| 17 | 15 16 | opth | |- ( <. r , s >. = <. t , u >. <-> ( r = t /\ s = u ) ) |
| 18 | 14 17 | bitrdi | |- ( w = <. t , u >. -> ( <. r , s >. = w <-> ( r = t /\ s = u ) ) ) |
| 19 | 13 18 | imbi12d | |- ( w = <. t , u >. -> ( ( ( r F s ) = ( F ` w ) -> <. r , s >. = w ) <-> ( ( r F s ) = ( t F u ) -> ( r = t /\ s = u ) ) ) ) |
| 20 | 19 | ralxp | |- ( A. w e. ( A X. B ) ( ( r F s ) = ( F ` w ) -> <. r , s >. = w ) <-> A. t e. A A. u e. B ( ( r F s ) = ( t F u ) -> ( r = t /\ s = u ) ) ) |
| 21 | 20 | 2ralbii | |- ( A. r e. A A. s e. B A. w e. ( A X. B ) ( ( r F s ) = ( F ` w ) -> <. r , s >. = w ) <-> A. r e. A A. s e. B A. t e. A A. u e. B ( ( r F s ) = ( t F u ) -> ( r = t /\ s = u ) ) ) |
| 22 | 9 21 | bitri | |- ( A. v e. ( A X. B ) A. w e. ( A X. B ) ( ( F ` v ) = ( F ` w ) -> v = w ) <-> A. r e. A A. s e. B A. t e. A A. u e. B ( ( r F s ) = ( t F u ) -> ( r = t /\ s = u ) ) ) |
| 23 | 22 | anbi2i | |- ( ( F : ( A X. B ) --> C /\ A. v e. ( A X. B ) A. w e. ( A X. B ) ( ( F ` v ) = ( F ` w ) -> v = w ) ) <-> ( F : ( A X. B ) --> C /\ A. r e. A A. s e. B A. t e. A A. u e. B ( ( r F s ) = ( t F u ) -> ( r = t /\ s = u ) ) ) ) |
| 24 | 1 23 | bitri | |- ( F : ( A X. B ) -1-1-> C <-> ( F : ( A X. B ) --> C /\ A. r e. A A. s e. B A. t e. A A. u e. B ( ( r F s ) = ( t F u ) -> ( r = t /\ s = u ) ) ) ) |