This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A permutation of any class moves a point which is moved to a different point which is moved. (Contributed by Stefan O'Rear, 22-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | f1omvdmvd | |- ( ( F : A -1-1-onto-> A /\ X e. dom ( F \ _I ) ) -> ( F ` X ) e. ( dom ( F \ _I ) \ { X } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr | |- ( ( F : A -1-1-onto-> A /\ X e. dom ( F \ _I ) ) -> X e. dom ( F \ _I ) ) |
|
| 2 | f1ofn | |- ( F : A -1-1-onto-> A -> F Fn A ) |
|
| 3 | difss | |- ( F \ _I ) C_ F |
|
| 4 | dmss | |- ( ( F \ _I ) C_ F -> dom ( F \ _I ) C_ dom F ) |
|
| 5 | 3 4 | ax-mp | |- dom ( F \ _I ) C_ dom F |
| 6 | f1odm | |- ( F : A -1-1-onto-> A -> dom F = A ) |
|
| 7 | 5 6 | sseqtrid | |- ( F : A -1-1-onto-> A -> dom ( F \ _I ) C_ A ) |
| 8 | 7 | sselda | |- ( ( F : A -1-1-onto-> A /\ X e. dom ( F \ _I ) ) -> X e. A ) |
| 9 | fnelnfp | |- ( ( F Fn A /\ X e. A ) -> ( X e. dom ( F \ _I ) <-> ( F ` X ) =/= X ) ) |
|
| 10 | 2 8 9 | syl2an2r | |- ( ( F : A -1-1-onto-> A /\ X e. dom ( F \ _I ) ) -> ( X e. dom ( F \ _I ) <-> ( F ` X ) =/= X ) ) |
| 11 | 1 10 | mpbid | |- ( ( F : A -1-1-onto-> A /\ X e. dom ( F \ _I ) ) -> ( F ` X ) =/= X ) |
| 12 | f1of1 | |- ( F : A -1-1-onto-> A -> F : A -1-1-> A ) |
|
| 13 | 12 | adantr | |- ( ( F : A -1-1-onto-> A /\ X e. dom ( F \ _I ) ) -> F : A -1-1-> A ) |
| 14 | f1of | |- ( F : A -1-1-onto-> A -> F : A --> A ) |
|
| 15 | 14 | adantr | |- ( ( F : A -1-1-onto-> A /\ X e. dom ( F \ _I ) ) -> F : A --> A ) |
| 16 | 15 8 | ffvelcdmd | |- ( ( F : A -1-1-onto-> A /\ X e. dom ( F \ _I ) ) -> ( F ` X ) e. A ) |
| 17 | f1fveq | |- ( ( F : A -1-1-> A /\ ( ( F ` X ) e. A /\ X e. A ) ) -> ( ( F ` ( F ` X ) ) = ( F ` X ) <-> ( F ` X ) = X ) ) |
|
| 18 | 13 16 8 17 | syl12anc | |- ( ( F : A -1-1-onto-> A /\ X e. dom ( F \ _I ) ) -> ( ( F ` ( F ` X ) ) = ( F ` X ) <-> ( F ` X ) = X ) ) |
| 19 | 18 | necon3bid | |- ( ( F : A -1-1-onto-> A /\ X e. dom ( F \ _I ) ) -> ( ( F ` ( F ` X ) ) =/= ( F ` X ) <-> ( F ` X ) =/= X ) ) |
| 20 | 11 19 | mpbird | |- ( ( F : A -1-1-onto-> A /\ X e. dom ( F \ _I ) ) -> ( F ` ( F ` X ) ) =/= ( F ` X ) ) |
| 21 | fnelnfp | |- ( ( F Fn A /\ ( F ` X ) e. A ) -> ( ( F ` X ) e. dom ( F \ _I ) <-> ( F ` ( F ` X ) ) =/= ( F ` X ) ) ) |
|
| 22 | 2 16 21 | syl2an2r | |- ( ( F : A -1-1-onto-> A /\ X e. dom ( F \ _I ) ) -> ( ( F ` X ) e. dom ( F \ _I ) <-> ( F ` ( F ` X ) ) =/= ( F ` X ) ) ) |
| 23 | 20 22 | mpbird | |- ( ( F : A -1-1-onto-> A /\ X e. dom ( F \ _I ) ) -> ( F ` X ) e. dom ( F \ _I ) ) |
| 24 | eldifsn | |- ( ( F ` X ) e. ( dom ( F \ _I ) \ { X } ) <-> ( ( F ` X ) e. dom ( F \ _I ) /\ ( F ` X ) =/= X ) ) |
|
| 25 | 23 11 24 | sylanbrc | |- ( ( F : A -1-1-onto-> A /\ X e. dom ( F \ _I ) ) -> ( F ` X ) e. ( dom ( F \ _I ) \ { X } ) ) |