This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: There is exactly one value of a function in its codomain. (Contributed by NM, 10-Dec-2003)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | feu | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐶 ∈ 𝐴 ) → ∃! 𝑦 ∈ 𝐵 〈 𝐶 , 𝑦 〉 ∈ 𝐹 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ffn | ⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 → 𝐹 Fn 𝐴 ) | |
| 2 | fneu2 | ⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝐶 ∈ 𝐴 ) → ∃! 𝑦 〈 𝐶 , 𝑦 〉 ∈ 𝐹 ) | |
| 3 | 1 2 | sylan | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐶 ∈ 𝐴 ) → ∃! 𝑦 〈 𝐶 , 𝑦 〉 ∈ 𝐹 ) |
| 4 | opelf | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 〈 𝐶 , 𝑦 〉 ∈ 𝐹 ) → ( 𝐶 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ) | |
| 5 | 4 | simprd | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 〈 𝐶 , 𝑦 〉 ∈ 𝐹 ) → 𝑦 ∈ 𝐵 ) |
| 6 | 5 | ex | ⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 → ( 〈 𝐶 , 𝑦 〉 ∈ 𝐹 → 𝑦 ∈ 𝐵 ) ) |
| 7 | 6 | pm4.71rd | ⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 → ( 〈 𝐶 , 𝑦 〉 ∈ 𝐹 ↔ ( 𝑦 ∈ 𝐵 ∧ 〈 𝐶 , 𝑦 〉 ∈ 𝐹 ) ) ) |
| 8 | 7 | eubidv | ⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 → ( ∃! 𝑦 〈 𝐶 , 𝑦 〉 ∈ 𝐹 ↔ ∃! 𝑦 ( 𝑦 ∈ 𝐵 ∧ 〈 𝐶 , 𝑦 〉 ∈ 𝐹 ) ) ) |
| 9 | 8 | adantr | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐶 ∈ 𝐴 ) → ( ∃! 𝑦 〈 𝐶 , 𝑦 〉 ∈ 𝐹 ↔ ∃! 𝑦 ( 𝑦 ∈ 𝐵 ∧ 〈 𝐶 , 𝑦 〉 ∈ 𝐹 ) ) ) |
| 10 | 3 9 | mpbid | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐶 ∈ 𝐴 ) → ∃! 𝑦 ( 𝑦 ∈ 𝐵 ∧ 〈 𝐶 , 𝑦 〉 ∈ 𝐹 ) ) |
| 11 | df-reu | ⊢ ( ∃! 𝑦 ∈ 𝐵 〈 𝐶 , 𝑦 〉 ∈ 𝐹 ↔ ∃! 𝑦 ( 𝑦 ∈ 𝐵 ∧ 〈 𝐶 , 𝑦 〉 ∈ 𝐹 ) ) | |
| 12 | 10 11 | sylibr | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐶 ∈ 𝐴 ) → ∃! 𝑦 ∈ 𝐵 〈 𝐶 , 𝑦 〉 ∈ 𝐹 ) |