This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the converse of a one-to-one onto function. (Contributed by NM, 26-May-2006) (Proof shortened by Mario Carneiro, 24-Dec-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | f1ocnvfv3 | ⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐶 ∈ 𝐵 ) → ( ◡ 𝐹 ‘ 𝐶 ) = ( ℩ 𝑥 ∈ 𝐴 ( 𝐹 ‘ 𝑥 ) = 𝐶 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1ocnvdm | ⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐶 ∈ 𝐵 ) → ( ◡ 𝐹 ‘ 𝐶 ) ∈ 𝐴 ) | |
| 2 | f1ocnvfvb | ⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝑥 ∈ 𝐴 ∧ 𝐶 ∈ 𝐵 ) → ( ( 𝐹 ‘ 𝑥 ) = 𝐶 ↔ ( ◡ 𝐹 ‘ 𝐶 ) = 𝑥 ) ) | |
| 3 | 2 | 3expa | ⊢ ( ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝐶 ∈ 𝐵 ) → ( ( 𝐹 ‘ 𝑥 ) = 𝐶 ↔ ( ◡ 𝐹 ‘ 𝐶 ) = 𝑥 ) ) |
| 4 | 3 | an32s | ⊢ ( ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐶 ∈ 𝐵 ) ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝐹 ‘ 𝑥 ) = 𝐶 ↔ ( ◡ 𝐹 ‘ 𝐶 ) = 𝑥 ) ) |
| 5 | eqcom | ⊢ ( 𝑥 = ( ◡ 𝐹 ‘ 𝐶 ) ↔ ( ◡ 𝐹 ‘ 𝐶 ) = 𝑥 ) | |
| 6 | 4 5 | bitr4di | ⊢ ( ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐶 ∈ 𝐵 ) ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝐹 ‘ 𝑥 ) = 𝐶 ↔ 𝑥 = ( ◡ 𝐹 ‘ 𝐶 ) ) ) |
| 7 | 1 6 | riota5 | ⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐶 ∈ 𝐵 ) → ( ℩ 𝑥 ∈ 𝐴 ( 𝐹 ‘ 𝑥 ) = 𝐶 ) = ( ◡ 𝐹 ‘ 𝐶 ) ) |
| 8 | 7 | eqcomd | ⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐶 ∈ 𝐵 ) → ( ◡ 𝐹 ‘ 𝐶 ) = ( ℩ 𝑥 ∈ 𝐴 ( 𝐹 ‘ 𝑥 ) = 𝐶 ) ) |