This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If the range of a one-to-one, onto function is finite, then the domain and range of the function are equinumerous. (Contributed by BTernaryTau, 9-Sep-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | f1oenfirn | ⊢ ( ( 𝐵 ∈ Fin ∧ 𝐹 : 𝐴 –1-1-onto→ 𝐵 ) → 𝐴 ≈ 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1ocnv | ⊢ ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 → ◡ 𝐹 : 𝐵 –1-1-onto→ 𝐴 ) | |
| 2 | f1ofn | ⊢ ( ◡ 𝐹 : 𝐵 –1-1-onto→ 𝐴 → ◡ 𝐹 Fn 𝐵 ) | |
| 3 | fnfi | ⊢ ( ( ◡ 𝐹 Fn 𝐵 ∧ 𝐵 ∈ Fin ) → ◡ 𝐹 ∈ Fin ) | |
| 4 | 2 3 | sylan | ⊢ ( ( ◡ 𝐹 : 𝐵 –1-1-onto→ 𝐴 ∧ 𝐵 ∈ Fin ) → ◡ 𝐹 ∈ Fin ) |
| 5 | 1 4 | sylan | ⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐵 ∈ Fin ) → ◡ 𝐹 ∈ Fin ) |
| 6 | 5 | ancoms | ⊢ ( ( 𝐵 ∈ Fin ∧ 𝐹 : 𝐴 –1-1-onto→ 𝐵 ) → ◡ 𝐹 ∈ Fin ) |
| 7 | cnvfi | ⊢ ( ◡ 𝐹 ∈ Fin → ◡ ◡ 𝐹 ∈ Fin ) | |
| 8 | f1orel | ⊢ ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 → Rel 𝐹 ) | |
| 9 | dfrel2 | ⊢ ( Rel 𝐹 ↔ ◡ ◡ 𝐹 = 𝐹 ) | |
| 10 | 8 9 | sylib | ⊢ ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 → ◡ ◡ 𝐹 = 𝐹 ) |
| 11 | 10 | eleq1d | ⊢ ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 → ( ◡ ◡ 𝐹 ∈ Fin ↔ 𝐹 ∈ Fin ) ) |
| 12 | 11 | biimpac | ⊢ ( ( ◡ ◡ 𝐹 ∈ Fin ∧ 𝐹 : 𝐴 –1-1-onto→ 𝐵 ) → 𝐹 ∈ Fin ) |
| 13 | 7 12 | sylan | ⊢ ( ( ◡ 𝐹 ∈ Fin ∧ 𝐹 : 𝐴 –1-1-onto→ 𝐵 ) → 𝐹 ∈ Fin ) |
| 14 | 6 13 | sylancom | ⊢ ( ( 𝐵 ∈ Fin ∧ 𝐹 : 𝐴 –1-1-onto→ 𝐵 ) → 𝐹 ∈ Fin ) |
| 15 | f1oen3g | ⊢ ( ( 𝐹 ∈ Fin ∧ 𝐹 : 𝐴 –1-1-onto→ 𝐵 ) → 𝐴 ≈ 𝐵 ) | |
| 16 | 14 15 | sylancom | ⊢ ( ( 𝐵 ∈ Fin ∧ 𝐹 : 𝐴 –1-1-onto→ 𝐵 ) → 𝐴 ≈ 𝐵 ) |