This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If the range of a one-to-one, onto function is finite, then the domain and range of the function are equinumerous. (Contributed by BTernaryTau, 9-Sep-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | f1oenfirn | |- ( ( B e. Fin /\ F : A -1-1-onto-> B ) -> A ~~ B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1ocnv | |- ( F : A -1-1-onto-> B -> `' F : B -1-1-onto-> A ) |
|
| 2 | f1ofn | |- ( `' F : B -1-1-onto-> A -> `' F Fn B ) |
|
| 3 | fnfi | |- ( ( `' F Fn B /\ B e. Fin ) -> `' F e. Fin ) |
|
| 4 | 2 3 | sylan | |- ( ( `' F : B -1-1-onto-> A /\ B e. Fin ) -> `' F e. Fin ) |
| 5 | 1 4 | sylan | |- ( ( F : A -1-1-onto-> B /\ B e. Fin ) -> `' F e. Fin ) |
| 6 | 5 | ancoms | |- ( ( B e. Fin /\ F : A -1-1-onto-> B ) -> `' F e. Fin ) |
| 7 | cnvfi | |- ( `' F e. Fin -> `' `' F e. Fin ) |
|
| 8 | f1orel | |- ( F : A -1-1-onto-> B -> Rel F ) |
|
| 9 | dfrel2 | |- ( Rel F <-> `' `' F = F ) |
|
| 10 | 8 9 | sylib | |- ( F : A -1-1-onto-> B -> `' `' F = F ) |
| 11 | 10 | eleq1d | |- ( F : A -1-1-onto-> B -> ( `' `' F e. Fin <-> F e. Fin ) ) |
| 12 | 11 | biimpac | |- ( ( `' `' F e. Fin /\ F : A -1-1-onto-> B ) -> F e. Fin ) |
| 13 | 7 12 | sylan | |- ( ( `' F e. Fin /\ F : A -1-1-onto-> B ) -> F e. Fin ) |
| 14 | 6 13 | sylancom | |- ( ( B e. Fin /\ F : A -1-1-onto-> B ) -> F e. Fin ) |
| 15 | f1oen3g | |- ( ( F e. Fin /\ F : A -1-1-onto-> B ) -> A ~~ B ) |
|
| 16 | 14 15 | sylancom | |- ( ( B e. Fin /\ F : A -1-1-onto-> B ) -> A ~~ B ) |