This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If the range of F equals the domain of G , then the composition ( G o. F ) is bijective iff F and G are both bijective. (Contributed by GL and AV, 7-Oct-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | f1ocof1ob | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐺 : 𝐶 ⟶ 𝐷 ∧ ran 𝐹 = 𝐶 ) → ( ( 𝐺 ∘ 𝐹 ) : 𝐴 –1-1-onto→ 𝐷 ↔ ( 𝐹 : 𝐴 –1-1→ 𝐶 ∧ 𝐺 : 𝐶 –1-1-onto→ 𝐷 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ffrn | ⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 → 𝐹 : 𝐴 ⟶ ran 𝐹 ) | |
| 2 | 1 | 3ad2ant1 | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐺 : 𝐶 ⟶ 𝐷 ∧ ran 𝐹 = 𝐶 ) → 𝐹 : 𝐴 ⟶ ran 𝐹 ) |
| 3 | feq3 | ⊢ ( ran 𝐹 = 𝐶 → ( 𝐹 : 𝐴 ⟶ ran 𝐹 ↔ 𝐹 : 𝐴 ⟶ 𝐶 ) ) | |
| 4 | 3 | 3ad2ant3 | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐺 : 𝐶 ⟶ 𝐷 ∧ ran 𝐹 = 𝐶 ) → ( 𝐹 : 𝐴 ⟶ ran 𝐹 ↔ 𝐹 : 𝐴 ⟶ 𝐶 ) ) |
| 5 | 2 4 | mpbid | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐺 : 𝐶 ⟶ 𝐷 ∧ ran 𝐹 = 𝐶 ) → 𝐹 : 𝐴 ⟶ 𝐶 ) |
| 6 | f1cof1b | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐶 ∧ 𝐺 : 𝐶 ⟶ 𝐷 ∧ ran 𝐹 = 𝐶 ) → ( ( 𝐺 ∘ 𝐹 ) : 𝐴 –1-1→ 𝐷 ↔ ( 𝐹 : 𝐴 –1-1→ 𝐶 ∧ 𝐺 : 𝐶 –1-1→ 𝐷 ) ) ) | |
| 7 | 5 6 | syld3an1 | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐺 : 𝐶 ⟶ 𝐷 ∧ ran 𝐹 = 𝐶 ) → ( ( 𝐺 ∘ 𝐹 ) : 𝐴 –1-1→ 𝐷 ↔ ( 𝐹 : 𝐴 –1-1→ 𝐶 ∧ 𝐺 : 𝐶 –1-1→ 𝐷 ) ) ) |
| 8 | ffn | ⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 → 𝐹 Fn 𝐴 ) | |
| 9 | fnfocofob | ⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝐺 : 𝐶 ⟶ 𝐷 ∧ ran 𝐹 = 𝐶 ) → ( ( 𝐺 ∘ 𝐹 ) : 𝐴 –onto→ 𝐷 ↔ 𝐺 : 𝐶 –onto→ 𝐷 ) ) | |
| 10 | 8 9 | syl3an1 | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐺 : 𝐶 ⟶ 𝐷 ∧ ran 𝐹 = 𝐶 ) → ( ( 𝐺 ∘ 𝐹 ) : 𝐴 –onto→ 𝐷 ↔ 𝐺 : 𝐶 –onto→ 𝐷 ) ) |
| 11 | 7 10 | anbi12d | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐺 : 𝐶 ⟶ 𝐷 ∧ ran 𝐹 = 𝐶 ) → ( ( ( 𝐺 ∘ 𝐹 ) : 𝐴 –1-1→ 𝐷 ∧ ( 𝐺 ∘ 𝐹 ) : 𝐴 –onto→ 𝐷 ) ↔ ( ( 𝐹 : 𝐴 –1-1→ 𝐶 ∧ 𝐺 : 𝐶 –1-1→ 𝐷 ) ∧ 𝐺 : 𝐶 –onto→ 𝐷 ) ) ) |
| 12 | anass | ⊢ ( ( ( 𝐹 : 𝐴 –1-1→ 𝐶 ∧ 𝐺 : 𝐶 –1-1→ 𝐷 ) ∧ 𝐺 : 𝐶 –onto→ 𝐷 ) ↔ ( 𝐹 : 𝐴 –1-1→ 𝐶 ∧ ( 𝐺 : 𝐶 –1-1→ 𝐷 ∧ 𝐺 : 𝐶 –onto→ 𝐷 ) ) ) | |
| 13 | 11 12 | bitrdi | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐺 : 𝐶 ⟶ 𝐷 ∧ ran 𝐹 = 𝐶 ) → ( ( ( 𝐺 ∘ 𝐹 ) : 𝐴 –1-1→ 𝐷 ∧ ( 𝐺 ∘ 𝐹 ) : 𝐴 –onto→ 𝐷 ) ↔ ( 𝐹 : 𝐴 –1-1→ 𝐶 ∧ ( 𝐺 : 𝐶 –1-1→ 𝐷 ∧ 𝐺 : 𝐶 –onto→ 𝐷 ) ) ) ) |
| 14 | df-f1o | ⊢ ( ( 𝐺 ∘ 𝐹 ) : 𝐴 –1-1-onto→ 𝐷 ↔ ( ( 𝐺 ∘ 𝐹 ) : 𝐴 –1-1→ 𝐷 ∧ ( 𝐺 ∘ 𝐹 ) : 𝐴 –onto→ 𝐷 ) ) | |
| 15 | df-f1o | ⊢ ( 𝐺 : 𝐶 –1-1-onto→ 𝐷 ↔ ( 𝐺 : 𝐶 –1-1→ 𝐷 ∧ 𝐺 : 𝐶 –onto→ 𝐷 ) ) | |
| 16 | 15 | anbi2i | ⊢ ( ( 𝐹 : 𝐴 –1-1→ 𝐶 ∧ 𝐺 : 𝐶 –1-1-onto→ 𝐷 ) ↔ ( 𝐹 : 𝐴 –1-1→ 𝐶 ∧ ( 𝐺 : 𝐶 –1-1→ 𝐷 ∧ 𝐺 : 𝐶 –onto→ 𝐷 ) ) ) |
| 17 | 13 14 16 | 3bitr4g | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐺 : 𝐶 ⟶ 𝐷 ∧ ran 𝐹 = 𝐶 ) → ( ( 𝐺 ∘ 𝐹 ) : 𝐴 –1-1-onto→ 𝐷 ↔ ( 𝐹 : 𝐴 –1-1→ 𝐶 ∧ 𝐺 : 𝐶 –1-1-onto→ 𝐷 ) ) ) |