This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If the range of F equals the domain of G , then the composition ( G o. F ) is bijective iff F and G are both bijective. (Contributed by GL and AV, 7-Oct-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | f1ocof1ob | |- ( ( F : A --> B /\ G : C --> D /\ ran F = C ) -> ( ( G o. F ) : A -1-1-onto-> D <-> ( F : A -1-1-> C /\ G : C -1-1-onto-> D ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ffrn | |- ( F : A --> B -> F : A --> ran F ) |
|
| 2 | 1 | 3ad2ant1 | |- ( ( F : A --> B /\ G : C --> D /\ ran F = C ) -> F : A --> ran F ) |
| 3 | feq3 | |- ( ran F = C -> ( F : A --> ran F <-> F : A --> C ) ) |
|
| 4 | 3 | 3ad2ant3 | |- ( ( F : A --> B /\ G : C --> D /\ ran F = C ) -> ( F : A --> ran F <-> F : A --> C ) ) |
| 5 | 2 4 | mpbid | |- ( ( F : A --> B /\ G : C --> D /\ ran F = C ) -> F : A --> C ) |
| 6 | f1cof1b | |- ( ( F : A --> C /\ G : C --> D /\ ran F = C ) -> ( ( G o. F ) : A -1-1-> D <-> ( F : A -1-1-> C /\ G : C -1-1-> D ) ) ) |
|
| 7 | 5 6 | syld3an1 | |- ( ( F : A --> B /\ G : C --> D /\ ran F = C ) -> ( ( G o. F ) : A -1-1-> D <-> ( F : A -1-1-> C /\ G : C -1-1-> D ) ) ) |
| 8 | ffn | |- ( F : A --> B -> F Fn A ) |
|
| 9 | fnfocofob | |- ( ( F Fn A /\ G : C --> D /\ ran F = C ) -> ( ( G o. F ) : A -onto-> D <-> G : C -onto-> D ) ) |
|
| 10 | 8 9 | syl3an1 | |- ( ( F : A --> B /\ G : C --> D /\ ran F = C ) -> ( ( G o. F ) : A -onto-> D <-> G : C -onto-> D ) ) |
| 11 | 7 10 | anbi12d | |- ( ( F : A --> B /\ G : C --> D /\ ran F = C ) -> ( ( ( G o. F ) : A -1-1-> D /\ ( G o. F ) : A -onto-> D ) <-> ( ( F : A -1-1-> C /\ G : C -1-1-> D ) /\ G : C -onto-> D ) ) ) |
| 12 | anass | |- ( ( ( F : A -1-1-> C /\ G : C -1-1-> D ) /\ G : C -onto-> D ) <-> ( F : A -1-1-> C /\ ( G : C -1-1-> D /\ G : C -onto-> D ) ) ) |
|
| 13 | 11 12 | bitrdi | |- ( ( F : A --> B /\ G : C --> D /\ ran F = C ) -> ( ( ( G o. F ) : A -1-1-> D /\ ( G o. F ) : A -onto-> D ) <-> ( F : A -1-1-> C /\ ( G : C -1-1-> D /\ G : C -onto-> D ) ) ) ) |
| 14 | df-f1o | |- ( ( G o. F ) : A -1-1-onto-> D <-> ( ( G o. F ) : A -1-1-> D /\ ( G o. F ) : A -onto-> D ) ) |
|
| 15 | df-f1o | |- ( G : C -1-1-onto-> D <-> ( G : C -1-1-> D /\ G : C -onto-> D ) ) |
|
| 16 | 15 | anbi2i | |- ( ( F : A -1-1-> C /\ G : C -1-1-onto-> D ) <-> ( F : A -1-1-> C /\ ( G : C -1-1-> D /\ G : C -onto-> D ) ) ) |
| 17 | 13 14 16 | 3bitr4g | |- ( ( F : A --> B /\ G : C --> D /\ ran F = C ) -> ( ( G o. F ) : A -1-1-onto-> D <-> ( F : A -1-1-> C /\ G : C -1-1-onto-> D ) ) ) |