This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If the range of F equals the domain of G , then the composition ( G o. F ) is bijective iff F and G are both bijective. Symmetric version of f1ocof1ob including the fact that F is a surjection onto its range. (Contributed by GL and AV, 20-Sep-2024) (Proof shortened by AV, 7-Oct-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | f1ocof1ob2 | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐺 : 𝐶 ⟶ 𝐷 ∧ ran 𝐹 = 𝐶 ) → ( ( 𝐺 ∘ 𝐹 ) : 𝐴 –1-1-onto→ 𝐷 ↔ ( 𝐹 : 𝐴 –1-1-onto→ 𝐶 ∧ 𝐺 : 𝐶 –1-1-onto→ 𝐷 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1ocof1ob | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐺 : 𝐶 ⟶ 𝐷 ∧ ran 𝐹 = 𝐶 ) → ( ( 𝐺 ∘ 𝐹 ) : 𝐴 –1-1-onto→ 𝐷 ↔ ( 𝐹 : 𝐴 –1-1→ 𝐶 ∧ 𝐺 : 𝐶 –1-1-onto→ 𝐷 ) ) ) | |
| 2 | f1f1orn | ⊢ ( 𝐹 : 𝐴 –1-1→ 𝐶 → 𝐹 : 𝐴 –1-1-onto→ ran 𝐹 ) | |
| 3 | f1oeq3 | ⊢ ( ran 𝐹 = 𝐶 → ( 𝐹 : 𝐴 –1-1-onto→ ran 𝐹 ↔ 𝐹 : 𝐴 –1-1-onto→ 𝐶 ) ) | |
| 4 | 2 3 | imbitrid | ⊢ ( ran 𝐹 = 𝐶 → ( 𝐹 : 𝐴 –1-1→ 𝐶 → 𝐹 : 𝐴 –1-1-onto→ 𝐶 ) ) |
| 5 | 4 | 3ad2ant3 | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐺 : 𝐶 ⟶ 𝐷 ∧ ran 𝐹 = 𝐶 ) → ( 𝐹 : 𝐴 –1-1→ 𝐶 → 𝐹 : 𝐴 –1-1-onto→ 𝐶 ) ) |
| 6 | f1of1 | ⊢ ( 𝐹 : 𝐴 –1-1-onto→ 𝐶 → 𝐹 : 𝐴 –1-1→ 𝐶 ) | |
| 7 | 5 6 | impbid1 | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐺 : 𝐶 ⟶ 𝐷 ∧ ran 𝐹 = 𝐶 ) → ( 𝐹 : 𝐴 –1-1→ 𝐶 ↔ 𝐹 : 𝐴 –1-1-onto→ 𝐶 ) ) |
| 8 | 7 | anbi1d | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐺 : 𝐶 ⟶ 𝐷 ∧ ran 𝐹 = 𝐶 ) → ( ( 𝐹 : 𝐴 –1-1→ 𝐶 ∧ 𝐺 : 𝐶 –1-1-onto→ 𝐷 ) ↔ ( 𝐹 : 𝐴 –1-1-onto→ 𝐶 ∧ 𝐺 : 𝐶 –1-1-onto→ 𝐷 ) ) ) |
| 9 | 1 8 | bitrd | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐺 : 𝐶 ⟶ 𝐷 ∧ ran 𝐹 = 𝐶 ) → ( ( 𝐺 ∘ 𝐹 ) : 𝐴 –1-1-onto→ 𝐷 ↔ ( 𝐹 : 𝐴 –1-1-onto→ 𝐶 ∧ 𝐺 : 𝐶 –1-1-onto→ 𝐷 ) ) ) |