This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Composition of two one-to-one functions. Generalization of f1co . (Contributed by AV, 18-Sep-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | f1cof1 | ⊢ ( ( 𝐹 : 𝐶 –1-1→ 𝐷 ∧ 𝐺 : 𝐴 –1-1→ 𝐵 ) → ( 𝐹 ∘ 𝐺 ) : ( ◡ 𝐺 “ 𝐶 ) –1-1→ 𝐷 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-f1 | ⊢ ( 𝐹 : 𝐶 –1-1→ 𝐷 ↔ ( 𝐹 : 𝐶 ⟶ 𝐷 ∧ Fun ◡ 𝐹 ) ) | |
| 2 | df-f1 | ⊢ ( 𝐺 : 𝐴 –1-1→ 𝐵 ↔ ( 𝐺 : 𝐴 ⟶ 𝐵 ∧ Fun ◡ 𝐺 ) ) | |
| 3 | ffun | ⊢ ( 𝐺 : 𝐴 ⟶ 𝐵 → Fun 𝐺 ) | |
| 4 | fcof | ⊢ ( ( 𝐹 : 𝐶 ⟶ 𝐷 ∧ Fun 𝐺 ) → ( 𝐹 ∘ 𝐺 ) : ( ◡ 𝐺 “ 𝐶 ) ⟶ 𝐷 ) | |
| 5 | 3 4 | sylan2 | ⊢ ( ( 𝐹 : 𝐶 ⟶ 𝐷 ∧ 𝐺 : 𝐴 ⟶ 𝐵 ) → ( 𝐹 ∘ 𝐺 ) : ( ◡ 𝐺 “ 𝐶 ) ⟶ 𝐷 ) |
| 6 | funco | ⊢ ( ( Fun ◡ 𝐺 ∧ Fun ◡ 𝐹 ) → Fun ( ◡ 𝐺 ∘ ◡ 𝐹 ) ) | |
| 7 | cnvco | ⊢ ◡ ( 𝐹 ∘ 𝐺 ) = ( ◡ 𝐺 ∘ ◡ 𝐹 ) | |
| 8 | 7 | funeqi | ⊢ ( Fun ◡ ( 𝐹 ∘ 𝐺 ) ↔ Fun ( ◡ 𝐺 ∘ ◡ 𝐹 ) ) |
| 9 | 6 8 | sylibr | ⊢ ( ( Fun ◡ 𝐺 ∧ Fun ◡ 𝐹 ) → Fun ◡ ( 𝐹 ∘ 𝐺 ) ) |
| 10 | 9 | ancoms | ⊢ ( ( Fun ◡ 𝐹 ∧ Fun ◡ 𝐺 ) → Fun ◡ ( 𝐹 ∘ 𝐺 ) ) |
| 11 | 5 10 | anim12i | ⊢ ( ( ( 𝐹 : 𝐶 ⟶ 𝐷 ∧ 𝐺 : 𝐴 ⟶ 𝐵 ) ∧ ( Fun ◡ 𝐹 ∧ Fun ◡ 𝐺 ) ) → ( ( 𝐹 ∘ 𝐺 ) : ( ◡ 𝐺 “ 𝐶 ) ⟶ 𝐷 ∧ Fun ◡ ( 𝐹 ∘ 𝐺 ) ) ) |
| 12 | 11 | an4s | ⊢ ( ( ( 𝐹 : 𝐶 ⟶ 𝐷 ∧ Fun ◡ 𝐹 ) ∧ ( 𝐺 : 𝐴 ⟶ 𝐵 ∧ Fun ◡ 𝐺 ) ) → ( ( 𝐹 ∘ 𝐺 ) : ( ◡ 𝐺 “ 𝐶 ) ⟶ 𝐷 ∧ Fun ◡ ( 𝐹 ∘ 𝐺 ) ) ) |
| 13 | 1 2 12 | syl2anb | ⊢ ( ( 𝐹 : 𝐶 –1-1→ 𝐷 ∧ 𝐺 : 𝐴 –1-1→ 𝐵 ) → ( ( 𝐹 ∘ 𝐺 ) : ( ◡ 𝐺 “ 𝐶 ) ⟶ 𝐷 ∧ Fun ◡ ( 𝐹 ∘ 𝐺 ) ) ) |
| 14 | df-f1 | ⊢ ( ( 𝐹 ∘ 𝐺 ) : ( ◡ 𝐺 “ 𝐶 ) –1-1→ 𝐷 ↔ ( ( 𝐹 ∘ 𝐺 ) : ( ◡ 𝐺 “ 𝐶 ) ⟶ 𝐷 ∧ Fun ◡ ( 𝐹 ∘ 𝐺 ) ) ) | |
| 15 | 13 14 | sylibr | ⊢ ( ( 𝐹 : 𝐶 –1-1→ 𝐷 ∧ 𝐺 : 𝐴 –1-1→ 𝐵 ) → ( 𝐹 ∘ 𝐺 ) : ( ◡ 𝐺 “ 𝐶 ) –1-1→ 𝐷 ) |