This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Composition of two one-to-one functions. Generalization of f1co . (Contributed by AV, 18-Sep-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | f1cof1 | |- ( ( F : C -1-1-> D /\ G : A -1-1-> B ) -> ( F o. G ) : ( `' G " C ) -1-1-> D ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-f1 | |- ( F : C -1-1-> D <-> ( F : C --> D /\ Fun `' F ) ) |
|
| 2 | df-f1 | |- ( G : A -1-1-> B <-> ( G : A --> B /\ Fun `' G ) ) |
|
| 3 | ffun | |- ( G : A --> B -> Fun G ) |
|
| 4 | fcof | |- ( ( F : C --> D /\ Fun G ) -> ( F o. G ) : ( `' G " C ) --> D ) |
|
| 5 | 3 4 | sylan2 | |- ( ( F : C --> D /\ G : A --> B ) -> ( F o. G ) : ( `' G " C ) --> D ) |
| 6 | funco | |- ( ( Fun `' G /\ Fun `' F ) -> Fun ( `' G o. `' F ) ) |
|
| 7 | cnvco | |- `' ( F o. G ) = ( `' G o. `' F ) |
|
| 8 | 7 | funeqi | |- ( Fun `' ( F o. G ) <-> Fun ( `' G o. `' F ) ) |
| 9 | 6 8 | sylibr | |- ( ( Fun `' G /\ Fun `' F ) -> Fun `' ( F o. G ) ) |
| 10 | 9 | ancoms | |- ( ( Fun `' F /\ Fun `' G ) -> Fun `' ( F o. G ) ) |
| 11 | 5 10 | anim12i | |- ( ( ( F : C --> D /\ G : A --> B ) /\ ( Fun `' F /\ Fun `' G ) ) -> ( ( F o. G ) : ( `' G " C ) --> D /\ Fun `' ( F o. G ) ) ) |
| 12 | 11 | an4s | |- ( ( ( F : C --> D /\ Fun `' F ) /\ ( G : A --> B /\ Fun `' G ) ) -> ( ( F o. G ) : ( `' G " C ) --> D /\ Fun `' ( F o. G ) ) ) |
| 13 | 1 2 12 | syl2anb | |- ( ( F : C -1-1-> D /\ G : A -1-1-> B ) -> ( ( F o. G ) : ( `' G " C ) --> D /\ Fun `' ( F o. G ) ) ) |
| 14 | df-f1 | |- ( ( F o. G ) : ( `' G " C ) -1-1-> D <-> ( ( F o. G ) : ( `' G " C ) --> D /\ Fun `' ( F o. G ) ) ) |
|
| 15 | 13 14 | sylibr | |- ( ( F : C -1-1-> D /\ G : A -1-1-> B ) -> ( F o. G ) : ( `' G " C ) -1-1-> D ) |