This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A one-to-one function in terms of different function values for different arguments. (Contributed by Alexander van der Vekens, 26-Jan-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dff14b | ⊢ ( 𝐹 : 𝐴 –1-1→ 𝐵 ↔ ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ ( 𝐴 ∖ { 𝑥 } ) ( 𝐹 ‘ 𝑥 ) ≠ ( 𝐹 ‘ 𝑦 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dff14a | ⊢ ( 𝐹 : 𝐴 –1-1→ 𝐵 ↔ ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 ≠ 𝑦 → ( 𝐹 ‘ 𝑥 ) ≠ ( 𝐹 ‘ 𝑦 ) ) ) ) | |
| 2 | necom | ⊢ ( 𝑥 ≠ 𝑦 ↔ 𝑦 ≠ 𝑥 ) | |
| 3 | 2 | imbi1i | ⊢ ( ( 𝑥 ≠ 𝑦 → ( 𝐹 ‘ 𝑥 ) ≠ ( 𝐹 ‘ 𝑦 ) ) ↔ ( 𝑦 ≠ 𝑥 → ( 𝐹 ‘ 𝑥 ) ≠ ( 𝐹 ‘ 𝑦 ) ) ) |
| 4 | 3 | ralbii | ⊢ ( ∀ 𝑦 ∈ 𝐴 ( 𝑥 ≠ 𝑦 → ( 𝐹 ‘ 𝑥 ) ≠ ( 𝐹 ‘ 𝑦 ) ) ↔ ∀ 𝑦 ∈ 𝐴 ( 𝑦 ≠ 𝑥 → ( 𝐹 ‘ 𝑥 ) ≠ ( 𝐹 ‘ 𝑦 ) ) ) |
| 5 | raldifsnb | ⊢ ( ∀ 𝑦 ∈ 𝐴 ( 𝑦 ≠ 𝑥 → ( 𝐹 ‘ 𝑥 ) ≠ ( 𝐹 ‘ 𝑦 ) ) ↔ ∀ 𝑦 ∈ ( 𝐴 ∖ { 𝑥 } ) ( 𝐹 ‘ 𝑥 ) ≠ ( 𝐹 ‘ 𝑦 ) ) | |
| 6 | 4 5 | bitri | ⊢ ( ∀ 𝑦 ∈ 𝐴 ( 𝑥 ≠ 𝑦 → ( 𝐹 ‘ 𝑥 ) ≠ ( 𝐹 ‘ 𝑦 ) ) ↔ ∀ 𝑦 ∈ ( 𝐴 ∖ { 𝑥 } ) ( 𝐹 ‘ 𝑥 ) ≠ ( 𝐹 ‘ 𝑦 ) ) |
| 7 | 6 | ralbii | ⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 ≠ 𝑦 → ( 𝐹 ‘ 𝑥 ) ≠ ( 𝐹 ‘ 𝑦 ) ) ↔ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ ( 𝐴 ∖ { 𝑥 } ) ( 𝐹 ‘ 𝑥 ) ≠ ( 𝐹 ‘ 𝑦 ) ) |
| 8 | 7 | anbi2i | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 ≠ 𝑦 → ( 𝐹 ‘ 𝑥 ) ≠ ( 𝐹 ‘ 𝑦 ) ) ) ↔ ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ ( 𝐴 ∖ { 𝑥 } ) ( 𝐹 ‘ 𝑥 ) ≠ ( 𝐹 ‘ 𝑦 ) ) ) |
| 9 | 1 8 | bitri | ⊢ ( 𝐹 : 𝐴 –1-1→ 𝐵 ↔ ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ ( 𝐴 ∖ { 𝑥 } ) ( 𝐹 ‘ 𝑥 ) ≠ ( 𝐹 ‘ 𝑦 ) ) ) |