This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Relationship between one-to-one and one-to-one onto function. (Contributed by NM, 4-Apr-1998)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | f11o.1 | ⊢ 𝐹 ∈ V | |
| Assertion | f11o | ⊢ ( 𝐹 : 𝐴 –1-1→ 𝐵 ↔ ∃ 𝑥 ( 𝐹 : 𝐴 –1-1-onto→ 𝑥 ∧ 𝑥 ⊆ 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f11o.1 | ⊢ 𝐹 ∈ V | |
| 2 | 1 | ffoss | ⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 ↔ ∃ 𝑥 ( 𝐹 : 𝐴 –onto→ 𝑥 ∧ 𝑥 ⊆ 𝐵 ) ) |
| 3 | 2 | anbi1i | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ Fun ◡ 𝐹 ) ↔ ( ∃ 𝑥 ( 𝐹 : 𝐴 –onto→ 𝑥 ∧ 𝑥 ⊆ 𝐵 ) ∧ Fun ◡ 𝐹 ) ) |
| 4 | df-f1 | ⊢ ( 𝐹 : 𝐴 –1-1→ 𝐵 ↔ ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ Fun ◡ 𝐹 ) ) | |
| 5 | dff1o3 | ⊢ ( 𝐹 : 𝐴 –1-1-onto→ 𝑥 ↔ ( 𝐹 : 𝐴 –onto→ 𝑥 ∧ Fun ◡ 𝐹 ) ) | |
| 6 | 5 | anbi1i | ⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ 𝑥 ∧ 𝑥 ⊆ 𝐵 ) ↔ ( ( 𝐹 : 𝐴 –onto→ 𝑥 ∧ Fun ◡ 𝐹 ) ∧ 𝑥 ⊆ 𝐵 ) ) |
| 7 | an32 | ⊢ ( ( ( 𝐹 : 𝐴 –onto→ 𝑥 ∧ Fun ◡ 𝐹 ) ∧ 𝑥 ⊆ 𝐵 ) ↔ ( ( 𝐹 : 𝐴 –onto→ 𝑥 ∧ 𝑥 ⊆ 𝐵 ) ∧ Fun ◡ 𝐹 ) ) | |
| 8 | 6 7 | bitri | ⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ 𝑥 ∧ 𝑥 ⊆ 𝐵 ) ↔ ( ( 𝐹 : 𝐴 –onto→ 𝑥 ∧ 𝑥 ⊆ 𝐵 ) ∧ Fun ◡ 𝐹 ) ) |
| 9 | 8 | exbii | ⊢ ( ∃ 𝑥 ( 𝐹 : 𝐴 –1-1-onto→ 𝑥 ∧ 𝑥 ⊆ 𝐵 ) ↔ ∃ 𝑥 ( ( 𝐹 : 𝐴 –onto→ 𝑥 ∧ 𝑥 ⊆ 𝐵 ) ∧ Fun ◡ 𝐹 ) ) |
| 10 | 19.41v | ⊢ ( ∃ 𝑥 ( ( 𝐹 : 𝐴 –onto→ 𝑥 ∧ 𝑥 ⊆ 𝐵 ) ∧ Fun ◡ 𝐹 ) ↔ ( ∃ 𝑥 ( 𝐹 : 𝐴 –onto→ 𝑥 ∧ 𝑥 ⊆ 𝐵 ) ∧ Fun ◡ 𝐹 ) ) | |
| 11 | 9 10 | bitri | ⊢ ( ∃ 𝑥 ( 𝐹 : 𝐴 –1-1-onto→ 𝑥 ∧ 𝑥 ⊆ 𝐵 ) ↔ ( ∃ 𝑥 ( 𝐹 : 𝐴 –onto→ 𝑥 ∧ 𝑥 ⊆ 𝐵 ) ∧ Fun ◡ 𝐹 ) ) |
| 12 | 3 4 11 | 3bitr4i | ⊢ ( 𝐹 : 𝐴 –1-1→ 𝐵 ↔ ∃ 𝑥 ( 𝐹 : 𝐴 –1-1-onto→ 𝑥 ∧ 𝑥 ⊆ 𝐵 ) ) |