This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Relationship between one-to-one and one-to-one onto function. (Contributed by NM, 4-Apr-1998)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | f11o.1 | |- F e. _V |
|
| Assertion | f11o | |- ( F : A -1-1-> B <-> E. x ( F : A -1-1-onto-> x /\ x C_ B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f11o.1 | |- F e. _V |
|
| 2 | 1 | ffoss | |- ( F : A --> B <-> E. x ( F : A -onto-> x /\ x C_ B ) ) |
| 3 | 2 | anbi1i | |- ( ( F : A --> B /\ Fun `' F ) <-> ( E. x ( F : A -onto-> x /\ x C_ B ) /\ Fun `' F ) ) |
| 4 | df-f1 | |- ( F : A -1-1-> B <-> ( F : A --> B /\ Fun `' F ) ) |
|
| 5 | dff1o3 | |- ( F : A -1-1-onto-> x <-> ( F : A -onto-> x /\ Fun `' F ) ) |
|
| 6 | 5 | anbi1i | |- ( ( F : A -1-1-onto-> x /\ x C_ B ) <-> ( ( F : A -onto-> x /\ Fun `' F ) /\ x C_ B ) ) |
| 7 | an32 | |- ( ( ( F : A -onto-> x /\ Fun `' F ) /\ x C_ B ) <-> ( ( F : A -onto-> x /\ x C_ B ) /\ Fun `' F ) ) |
|
| 8 | 6 7 | bitri | |- ( ( F : A -1-1-onto-> x /\ x C_ B ) <-> ( ( F : A -onto-> x /\ x C_ B ) /\ Fun `' F ) ) |
| 9 | 8 | exbii | |- ( E. x ( F : A -1-1-onto-> x /\ x C_ B ) <-> E. x ( ( F : A -onto-> x /\ x C_ B ) /\ Fun `' F ) ) |
| 10 | 19.41v | |- ( E. x ( ( F : A -onto-> x /\ x C_ B ) /\ Fun `' F ) <-> ( E. x ( F : A -onto-> x /\ x C_ B ) /\ Fun `' F ) ) |
|
| 11 | 9 10 | bitri | |- ( E. x ( F : A -1-1-onto-> x /\ x C_ B ) <-> ( E. x ( F : A -onto-> x /\ x C_ B ) /\ Fun `' F ) ) |
| 12 | 3 4 11 | 3bitr4i | |- ( F : A -1-1-> B <-> E. x ( F : A -1-1-onto-> x /\ x C_ B ) ) |